
Audit
NEAR Liquid Token

Presented by:

OtterSec contact@osec.io

Adrian Self adnan@osec.io

WilliamWang defund@osec.io

mailto:contact@osec.io
mailto:adnan@osec.io
mailto:defund@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-NLT-ADV-00 [low] [resolved] | Improper Direct Deposit Async Handling 6

05 General Findings 7
OS-NLT-SUG-00 | Internal Functions Marked Private . 8
OS-NLT-SUG-01 | Contract Source Metadata . 9
OS-NLT-SUG-02 | Redundant Helper Function . 10
OS-NLT-SUG-03 | Rounding Direction in Stake/Unstake . 11

Appendices

A Program Files 12

B Procedure 13

C Implementation Security Checklist 14

D Vulnerability Rating Scale 15

© 2022 OtterSec LLC. All Rights Reserved. 1 / 15

01 | Executive Summary

Overview

Stader Labs engaged OtterSec to perform an assessment of the near-x contract. This assessment was
conducted between August 29th and September 9th, 2022.

Critical vulnerabilities were communicated to the team prior to the delivery of the report to speed up
remediation. After delivering our audit report, weworked closely with the teamover to streamline patches
and confirm remediation. We delivered final confirmation of the patches September 9th, 2022.

After our initial audit, we also performed additional incremental reviews.

Key Findings

Over the course of this audit engagement, we produced 5 findings total.

In particular, we accounting issues related to asynchronous execution of callbacks (OS-NLT-ADV-00).

We also made a number of recommendations around tighter function access control (OS-NLT-SUG-00),
stricter standard conformance (OS-NLT-SUG-02), minor rounding issues (OS-NLT-SUG-03), andmore.

Overall, we commend the Stader team for being responsive and knowledgeable throughout the audit.

© 2022 OtterSec LLC. All Rights Reserved. 2 / 15

02 | Scope
The source code was delivered to us in a git repository at github.com/stader-labs/near-liquid-token. This
audit was performed against commit edbbdcb. We also reviewed PR #71

There was a total of 1 program included in this audit. A brief description of the program is as follows. A full
list of program files and hashes can be found in Appendix A.

Name Description

near-x Liquid staking protocol where staked NEAR is represented by NearX tokens.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 15

https://github.com/stader-labs/near-liquid-token
https://github.com/stader-labs/nearx/pull/71/files

03 | Findings
Overall, we report 5 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 0
High 0

Medium 0
Low 1

Informational 4

© 2022 OtterSec LLC. All Rights Reserved. 4 / 15

04 | Vulnerabilities
Here we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix D.

ID Severity Status Description

OS-NLT-ADV-00 Low Resolved Improper handling of asynchronous behavior during direct
deposit

© 2022 OtterSec LLC. All Rights Reserved. 5 / 15

NEAR Liquid Token Audit 04 | Vulnerabilities

OS-NLT-ADV-00 [low] [resolved] | Improper Direct Deposit Async Handling

Description

When invoking internal_direct_deposit_and_stake, a copy of the validator info is passed into
the asynchronous callback. Unfortunately due to Near’s asynchronous nature, this data can become out
of date, leading to a potential race condition.

If the deposit function is invokedmultiple times, this might cause inaccurate accounting due to use of a
cached ValidatorInfo.

A similar issue affects on_get_sp_staked_balance_for_rewards.

RUST

if is_promise_success() {
validator_info.staked += amount;
acc.stake_shares += num_shares;
self.total_stake_shares += num_shares;
self.total_staked += amount;
log!(

"Successfully staked {} into {}",
amount,
validator_info.account_id

);
self.internal_update_validator(&validator_info.account_id,

&validator_info);↪→

Remediation

Pass in the validator account id and reload the validator info in the callback handler.

RUST

pub fn on_stake_pool_direct_deposit_and_stake(
&mut self,
validator_account_id: AccountId,
// ...

) -> PromiseOrValue<bool> {

Patch

Resolved in ac317d0 and 3912ee1.

© 2022 OtterSec LLC. All Rights Reserved. 6 / 15

https://github.com/stader-labs/nearx/commit/ac317d0936481c1a84ae44b0bc6404d5b13d0fc4
https://github.com/stader-labs/nearx/commit/3912ee1a25c50f384f51f36ed09f24f01f5deed4

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Description

OS-NLT-SUG-00 Functions are marked as private when they should be internal.

OS-NLT-SUG-01 NEP-330 Contract Source Metadata is implemented, but contract source is not pub-
licly available at the given URL.

OS-NLT-SUG-02 The codebase implements a helper function which is already provided by NEAR’s
Rust SDK.

OS-NLT-SUG-03 The contract rounds against the protocol when unstaking NEAR.

© 2022 OtterSec LLC. All Rights Reserved. 7 / 15

NEAR Liquid Token Audit 05 | General Findings

OS-NLT-SUG-00 | Internal Functions Marked Private

Description

Functions in NEAR can be public, private, or internal. A private function is exposed on the blockchain,
but attempts to call the private function will fail unless the caller is the contract itself; either through a
callback or using the contract’s account directly. Internal functions, on the other hand, cannot be directly
called at all; they only perform functionality internal to the contract.

The following functions were observed to be private:

• get_validator_to_stake

• get_validator_to_unstake

• get_unstake_release_epoch

• epoch_reconcilation

However, these functions are not used for callbacks, and there is need to call them directly using the
contract’s account keys.

Remediation

Change these functions from private to internal.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 15

NEAR Liquid Token Audit 05 | General Findings

OS-NLT-SUG-01 | Contract Source Metadata

Description

The purpose of ContractSourceMetadata, as per NEP-330, is to allow “auditing and viewing source code
for a deployed smart contract.” This NEP is generally suitable only for open-source contracts, as a way for
users to easily locate the source code for the deployed contract.

The contract implements ContractSourceMetadataTrait in contracts/near-x/src/con
tract/metadata.rs. When this data is queried using the NEAR CLI, as shown below, the contract pro-
vides the URL https://github.com/stader-labs/near-liquid-token and the cargo package version. However,
this is not a public repository, and accessing this URL results in an error 404.

SH

$ NEAR_ENV=mainnet near view nearx.stader-labs.near
contract_source_metadata↪→

View call: nearx.stader-labs.near.contract_source_metadata()
{

version: '0.1.0',
link: 'https://github.com/stader-labs/near-liquid-token'

}

Remediation

Do not implement ContractSourceMetadata unless the contract is open-source and the repository
is available to the community. If this contract becomes open-source in the future, consider implementing
NEP-330 again.

© 2022 OtterSec LLC. All Rights Reserved. 9 / 15

https://github.com/near/NEPs/blob/master/neps/nep-0330.md
https://github.com/stader-labs/near-liquid-token

NEAR Liquid Token Audit 05 | General Findings

OS-NLT-SUG-02 | Redundant Helper Function

Description

In operator.rs, several callback functions use is_promise_success, a helper function which is
implemented in the codebase. However, this functionality is already provided by NEAR’s Rust SDK as
near_sdk::is_promise_success. Note that this is already used elsewhere in the codebase.

src/utils.rs RUST

4 pub fn is_promise_success() -> bool {
5 require!(
6 env::promise_results_count() == 1,
7 ERROR_EXPECT_RESULT_ON_CALLBACK
8);
9

10 matches!(env::promise_result(0), PromiseResult::Successful(_))
11 }

The current behavior of the custom implementation seems to be consistent with the behavior of
near_sdk::is_promise_success. However, it is recommended to use the NEAR Rust SDK’s imple-
mentation to benefit from any updates made to the functionality or efficiency of the function in future.

Remediation

Remove the custom implementation of is_promise_success, and use
near_sdk::is_promise_success everywhere instead.

© 2022 OtterSec LLC. All Rights Reserved. 10 / 15

NEAR Liquid Token Audit 05 | General Findings

OS-NLT-SUG-03 | Rounding Direction in Stake/Unstake

Description

Whenauser stakesNEAR, the receive aproportional amount of shares in return. This calculation is rounded
against the user, in that they may receive less than what is fair.

src/contract/internal.rs RUST

102 // Calculate the number of "stake" shares that the account will receive
for staking the↪→

103 // given amount.
104 let num_shares = self.num_shares_from_staked_amount_rounded_down(amount);
105 require!(num_shares > 0, ERROR_NON_POSITIVE_STAKE_SHARES);

When a user unstakes shares, they receive NEAR in return. However, in this case the calculation is rounded
against the protocol, in that the user may receive more than what is fair. Interestingly, the program later
rounds against the user while calculating their remaining amount.

src/contract/internal.rs RUST

145 let mut receive_amount =
self.staked_amount_from_num_shares_rounded_up(num_shares);↪→

146 require!(
147 receive_amount > 0,
148 ERROR_NON_POSITIVE_UNSTAKE_RECEVIE_AMOUNT
149);

It isworth noting that rounding errors are fairly inconsequential onNEAR, as the discrepancy (1 yoctoNEAR)
is negligible. Additionally, NEAR’s staking pool core contract rounds against the protocol in both stake
and unstake.

Remediation

The soundapproachwouldbe to always roundagainst theuser, in favor of theprotocol. In this case, use the
staked_amount_from_num_shares_rounded_downmethod to calculate receive_amount.

If the goal is to be consistent with NEAR’s core contracts, consider rounding against the protocol in all
cases. Additionally, document this behavior and ensure there is a “cushion fund” to handle rounding
losses.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 15

https://github.com/near/core-contracts/tree/master/staking-pool

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

Cargo.toml 64a152bc7831e6070d8a8f30693538a89802efbe839fe3f806d794b1de663ad1
src

constants.rs 50c53929f3083c2d4fe1cda4a0feb701db5c65398fd4654d13c2214e49cd9328
contract.rs 452c9b9433eb283e78f609c1f011d7a76c15cbc0b484e01d1cdbfbc1933a2fb8
errors.rs 8af8eb04547576aada86df080e23b85a9322d93b5656bad80e97e8df8266b25f
events.rs 56ef0627a79d9bfac632fb0ce56ae286a2cf2427df8f2c37388d6acec9de6116
fungible_token.rs e76e68cd007a050ffb6ef7cec3441405264775f2a0e04ebcf6e79ca565661e7f
lib.rs 4d2921421b084175652bf948a24fb138c43132c1b3f63953138d11ab5dad83ee
state.rs 2e4bc931008b81137468575efb569d94b39092ba457da94436c1d77e09edd4cd
utils.rs c97a01d029759486062e693aae0b11e91c5387d8c522258dc7bcd96d525dfb67
contract
internal.rs 5f30549619aab6b1567c5fef5e6d426d2f8cf13ac3783afc20e8baaa430ce3c0
metadata.rs 0dd01b05bdacadaafab6f4c4c1dc3abf67cd420eb0b4f1b8e2dd05ad46c636c2
operator.rs cc9c1a72acb54389bdadc9a35315f54cc9b393775790deaab018ead3a809e381
public.rs d5c829b1da4fdef92d77062894efc9a1a2ea509ac16d4d92862d5a241bf756e1
storage_spec.rs 4bf8c2ebfacda16979f4cb36beb21e7b23e6a457d8d8195e178dc24a604682d8
upgrade.rs 9ae925313f842f1a407b88dc41887f365b353e8db0d7508f019fb770624c3d84
util.rs b7337f4a7e3fe32329909cac3a45667741664197fbe63c593a3f97cc36939b89

fungible_token
metadata.rs 051800e4ad991961b85e2f741062516456dd61d02deea1befab1ed92e3c886f1
nearx_internal.rs 441dbf9e2799d493a0bddafa6e7663aa019a21f44f1a59269c8719afae2e83e4
nearx_token.rs 7bce195f5c1997b207622dfd13c2fb0f09ed41296c2ab74f5091474bbbba9399

tests
unit_tests.rs c4728ead3021c5337ea24a12076a553a2650e465ea3b4e592a531c492662d2fd
helpers
mod.rs a447ff7753c5658e79d3af169f08adc003df9f10f81bdf6d233ccb25e82bde8b

© 2022 OtterSec LLC. All Rights Reserved. 12 / 15

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service. An
example of a design vulnerability would be an onchain oracle which could be manipulated by flash loans
or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of NEAR’s
execution model. For a non-exhaustive list of security issues we check for, see Appendix C.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 13 / 15

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 14 / 15

D | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 15 / 15

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-NLT-ADV-00 [low] [resolved] | Improper Direct Deposit Async Handling

	General Findings
	OS-NLT-SUG-00 | Internal Functions Marked Private
	OS-NLT-SUG-01 | Contract Source Metadata
	OS-NLT-SUG-02 | Redundant Helper Function
	OS-NLT-SUG-03 | Rounding Direction in Stake/Unstake

	Appendices
	Program Files
	Procedure
	Implementation Security Checklist
	Vulnerability Rating Scale

