
Public

SMART CONTRACT AUDIT REPORT

for

Stader StakeManager

Prepared By: Xiaomi Huang

PeckShield
July 24, 2022

1/17 PeckShield Audit Report #: 2022-271

contact@peckshield.com

Public

Document Properties

Client Stader
Title Smart Contract Audit Report
Target Stader StakeManager
Version 1.0
Author Luck Hu
Auditors Luck Hu, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 24, 2022 Luck Hu Final Release
1.0-rc July 18, 2022 Luck Hu Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/17 PeckShield Audit Report #: 2022-271

Public

Contents

1 Introduction 4
1.1 About Stader . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Improved Roles Management in Stader . 11
3.2 Suggested Event Generations . 12
3.3 Trust Issue of Admin Keys . 14

4 Conclusion 16

References 17

3/17 PeckShield Audit Report #: 2022-271

Public

1 | Introduction

Given the opportunity to review the design document and related smart contract source code of
the StakeManager contract in the Stader protocol, we outline in the report our systematic approach
to evaluate potential security issues in the smart contract implementation, expose possible semantic
inconsistencies between smart contract code and design document, and provide additional suggestions
or recommendations for improvement. Our results show that the given version of smart contracts can
be further improved due to the presence of several issues related to either security or performance.
This document outlines our audit results.

1.1 About Stader

Stader specializes in non-custodial staking solutions for retail, enterprise customers, funds and blockchains.
Currently, Stader has launched liquid staking solutions on Terra, Fantom, Polygon, Hedera, and Near

while also developing a thriving DeFi ecosystem to complement their staking solutions. The audited
StakeManager contract moves the staking ecosystem on BNB chain to the next level, which supports
users to stake their BNB with Stader and receive a synthetic token (BNBx). Stader pools the staked
BNB together and optimally stakes it to validator nodes (balancing diversification, APR and fee). The
rewards generated from staking are added back to the pool and the value of BNBx (in terms of BNB)
increases. The basic information of the audited protocol is as follows:

Table 1.1: Basic Information of The Stader Protocol

Item Description
Issuer Stader

Website https://staderlabs.com/
Type EVM Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 24, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in

4/17 PeckShield Audit Report #: 2022-271

Public

this audit.

• https://github.com/stader-labs/bnbX.git (d56ab58)

And here is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/stader-labs/bnbX.git (241b7b8)

1.2 About PeckShield

PeckShield Inc. [8] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [7]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/17 PeckShield Audit Report #: 2022-271

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/17 PeckShield Audit Report #: 2022-271

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [6], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/17 PeckShield Audit Report #: 2022-271

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/17 PeckShield Audit Report #: 2022-271

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the StakeManager

contract of the Stader protocol. During the first phase of our audit, we study the smart contract
source code and run our in-house static code analyzer through the codebase. The purpose here is
to statically identify known coding bugs, and then manually verify (reject or confirm) issues reported
by our tool. We further manually review business logics, examine system operations, and place
DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 3

Informational 0

Total 3
We have so far identified a list of potential issues.After further analysis and internal discussion,

we determined a few issues of varying severities that need to be brought up and paid more attention
to, which are categorized in the above table. More information can be found in the next subsection,
and the detailed discussions of each of them are in Section 3.

9/17 PeckShield Audit Report #: 2022-271

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 3 low-severity vulnerabili-
ties.

Table 2.1: Key Stader StakeManager Audit Findings

ID Severity Title Category Status
PVE-001 Low Improved Roles Management in Stader Coding Practices Fixed
PVE-002 Low Suggested Event Generations Status Codes Fixed
PVE-003 Low Trust Issue of Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/17 PeckShield Audit Report #: 2022-271

Public

3 | Detailed Results

3.1 Improved Roles Management in Stader

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BnbX, StakeManager

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The BnbX contract implements a role-based access control mechanism which is inherited from the
openzeppelin AccessControlUpgradeable contract. Each role has an associated admin role that can
grant the role to a new member or revoke the role from one member. By default, the admin role is
DEFAULT_ADMIN_ROLE. However, it is suggested to set the admin role for each role explicitly.

To elaborate, we show below the code snippet from the BnbX contract. In the initialize()

routine, it grants DEFAULT_ADMIN_ROLE to the input _manager. And in the setStakeManager() routine, it
grants PREDICATE_ROLE to the new stakeManager. That is to say, the BnbX contract does not explicitly
set DEFAULT_ADMIN_ROLE as the admin role of PREDICATE_ROLE. Considering the importance of access
control, we strongly suggested to explicitly set DEFAULT_ADMIN_ROLE as the admin role of PREDICATE_ROLE
in initialize() by calling _setRoleAdmin().

19 f unc t i on i n i t i a l i z e (address _manager) ex te rna l o v e r r i d e i n i t i a l i z e r {
20 __AccessContro l_in i t () ;
21 __ERC20_init ("Liquid Staking BNB" , "BNBx") ;

23 r equ i r e (_manager != address (0) , "zero address provided") ;

25 _setupRole (DEFAULT_ADMIN_ROLE, _manager) ;
26 }

28 f unc t i on setStakeManager (address _address)
29 ex te rna l
30 o v e r r i d e

11/17 PeckShield Audit Report #: 2022-271

Public

31 on l yRo l e (DEFAULT_ADMIN_ROLE)
32 {
33 r equ i r e (stakeManager != _address , "Old address == new address") ;
34 r equ i r e (_address != address (0) , "zero address provided") ;

36 _revokeRole (PREDICATE_ROLE, stakeManager) ;
37 stakeManager = _address ;
38 _setupRole (PREDICATE_ROLE, _address) ;

40 emit SetStakeManager (_address) ;
41 }

Listing 3.1: BnbX:: initialize ()

Note the same improvement could be applied in StakeManager to set DEFAULT_ADMIN_ROLE as the
admin role of BOT.

Recommendation Improve the above mentioned contracts by explicitly setting admin role.

Status The issue has been fixed in the following commits: a35c48b and 0d082a8.

3.2 Suggested Event Generations

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: StakeManager

• Category: Coding Practices [5]

• CWE subcategory: CWE-563 [3]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

While examining the events that reflect the minDelegateThreshold dynamics in the setMinDelegateThreshold
() routine, we notice there is a lack of emitting an event to reflect minDelegateThreshold changes.
To elaborate, we show below the code snippet of the setMinDelegateThreshold() routine.

392 function setMinDelegateThreshold(uint256 _minDelegateThreshold)
393 external
394 override
395 onlyRole(DEFAULT_ADMIN_ROLE)
396 {

12/17 PeckShield Audit Report #: 2022-271

https://github.com/stader-labs/bnbX/commit/a35c48b
https://github.com/stader-labs/bnbX/commit/0d082a8

Public

397 require(_minDelegateThreshold > 0, "Invalid Threshold");
398 minDelegateThreshold = _minDelegateThreshold;
399 }

Listing 3.2: setMinDelegateThreshold()

With that, we suggest to add a new event SetMinDelegateThreshold() whenever the minDelegateThreshold
is updated. Note the same event could be emitted in initialize() where the minDelegateThreshold

is initialized.
What is more, the contract defines SetBotAddress()/SetBCDepositWallet() to update the bot and

bcDepositWallet. But there is a lack of emitting these two events in initialize() where they are
initialized.

64 function initialize(
65 address _bnbX ,
66 address _manager ,
67 address _tokenHub ,
68 address _bcDepositWallet ,
69 address _bot
70) external override initializer {
71 __AccessControl_init ();
72 __Pausable_init ();
73
74 require(
75 ((_bnbX != address (0)) &&
76 (_manager != address (0)) &&
77 (_tokenHub != address (0)) &&
78 (_bcDepositWallet != address (0)) &&
79 (_bot != address (0))),
80 "zero address provided"
81);
82
83 _setupRole(DEFAULT_ADMIN_ROLE , _manager);
84 _setupRole(BOT , _bot);
85
86 bnbX = _bnbX;
87 tokenHub = _tokenHub;
88 bcDepositWallet = _bcDepositWallet;
89 bot = _bot;
90 minDelegateThreshold = 1e18;
91 }

Listing 3.3: initialize()

Recommendation Properly emit the above-mentioned events with accurate information to
timely reflect state changes. This is very helpful for external analytics and reporting tools.

Status The issue has been fixed in the following commit: 0d082a8.

13/17 PeckShield Audit Report #: 2022-271

https://github.com/stader-labs/bnbX/commit/0d082a8

Public

3.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: StakeManager, BnbX

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the Stader protocol, there is a privileged manager account (with DEFAULT_ADMIN_ROLE) that plays a
critical role in governing and regulating the system-wide operations (e.g., grant new BOT/PREDICATE, set
new deposit bot wallet, etc.). Our analysis shows that the privileged account needs to be scrutinized.
In the following, we show the representative functions potentially affected by the privileges of the
privileged account.

Specifically, the privileged functions in the StakeManager contract allow for the manager to grant
new BOT, set new bcDepositWallet address which receives users staking funds in the Beacon chain, and
pause/unpause the protocol, etc.

363 function setBotAddress(address _address)
364 external
365 override
366 onlyRole(DEFAULT_ADMIN_ROLE)
367 {
368 require(bot != _address , "Old address == new address");
369 require(_address != address (0), "zero address provided");

371 _revokeRole(BOT , bot);
372 bot = _address;
373 _setupRole(BOT , _address);

375 emit SetBotAddress(_address);
376 }

378 /// @param _address - Beck32 decoding of Address of deposit Bot Wallet on Beacon
Chain with ‘0x‘ prefix

379 function setBCDepositWallet(address _address)
380 external
381 override
382 onlyRole(DEFAULT_ADMIN_ROLE)
383 {
384 require(bcDepositWallet != _address , "Old address == new address");
385 require(_address != address (0), "zero address provided");

387 bcDepositWallet = _address;

389 emit SetBCDepositWallet(_address);

14/17 PeckShield Audit Report #: 2022-271

Public

390 }

Listing 3.4: Example Privileged Operations in StakeManager.sol

Moreover, the privileged functions in the BnbX contract allow for the manager to grant new
PREDICATE_ROLE which can mint/burn users BnbX token, etc.

44 function setStakeManager(address _address)
45 external
46 override
47 onlyRole(DEFAULT_ADMIN_ROLE)
48 {
49 require(stakeManager != _address , "Old address == new address");
50 require(_address != address (0), "zero address provided");

52 _revokeRole(PREDICATE_ROLE , stakeManager);
53 stakeManager = _address;
54 _setupRole(PREDICATE_ROLE , _address);

56 emit SetStakeManager(_address);
57 }

Listing 3.5: Example Privileged Operations in BnbX.sol

We understand the need of the privileged functions for proper contract operations, but at the same
time the extra power to the privileged account may also be a counter-party risk to the contract users.
Therefore, we list this concern as an issue here from the audit perspective and highly recommend
making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status The issue has been acknowledged by the Stader team and derisking measures are put
in place by transferring the admin key to a multi-sig account with signers including Stader, protocols
on BNB, BNB foundation, investors and reputed community members. Meanwhile the privileges will be
made transparent to protocol users.

15/17 PeckShield Audit Report #: 2022-271

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Stader StakeManager con-
tract. Stader specializes in non-custodial staking solutions for retail, enterprise customers, funds
and blockchains. Currently, Stader has launched liquid staking solutions on Terra, Fantom, Polygon

, Hedera, and Near while also developing a thriving DeFi ecosystem to complement their staking
solutions. The audited StakeManager contract moves the staking ecosystem on BNB chain to the next
level, which supports uses to stake their BNB with Stader and receive a synthetic token (BNBx). Stader

pools the staked BNB together and optimally stakes it to validator nodes (balancing diversification,
APR and fee). The rewards generated from staking are added back to the pool and the value of BNBx
(in terms of BNB) increases. The current code base is clearly organized and those identified issues are
promptly confirmed and fixed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

16/17 PeckShield Audit Report #: 2022-271

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[7] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[8] PeckShield. PeckShield Inc. https://www.peckshield.com.

17/17 PeckShield Audit Report #: 2022-271

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Stader
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Improved Roles Management in Stader
	Suggested Event Generations
	Trust Issue of Admin Keys

	Conclusion
	References

