
Staderlabs - BnbX
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: June 29th, 2022 - July 5th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 9

3 FINDINGS & TECH DETAILS 10

3.1 (HAL-01) INTEGER UNDERFLOW - HIGH 12

Description 12

Code Location 12

Risk Level 14

Recommendation 14

Remediation Plan 14

3.2 (HAL-02) CALLING increaseTotalRedelegated BEFORE USER DEPOSITS

MAY CAUSE USER GETTING 0 BNBX - MEDIUM 15

Description 15

Scenario 15

Code Location 15

Risk Level 16

Recommendation 16

Remediation Plan 16

3.3 (HAL-03) CONTRACTS ARE NOT USING disableInitializers FUNCTION -

LOW 17

1

Description 17

Risk Level 17

Recommendation 17

Remediation Plan 17

3.4 (HAL-04) MISSING ADDRESS CHECK - INFORMATIONAL 18

Description 18

Code Location 18

Risk Level 18

Recommendation 18

Remediation Plan 18

4 AUTOMATED TESTING 18

4.1 STATIC ANALYSIS REPORT 20

Description 20

Slither results 20

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 07/05/2022 Pawel Bartunek

0.2 Draft Review 07/05/2022 Gabi Urrutia

1.0 Remediation Plan 07/12/2022 Pawel Bartunek

1.1 Remediation Plan Review 07/13/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Pawel Bartunek Halborn Pawel.Bartunek@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Pawel.Bartunek@halborn.com

4

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Staderlabs engaged Halborn to conduct a security audit on their smart

contracts beginning on June 29th, 2022 and ending on July 5th, 2022 .

The security assessment was scoped to the smart contracts provided to the

Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided one week for the engagement and assigned

a full-time security engineer to audit the security of the smart con-

tract. The security engineer is a blockchain and smart-contract security

expert with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by the Staderlabs team. The main ones are the following:

• Ensure that increasing staked amount via increaseTotalRedelegated

does not cause arithmetic issues in other functions.

• Verify BNB/BNBX conversion logic, to ensure users are getting a

share after deposit.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

5

EX
EC

UT
IV

E
OV

ER
VI

EW

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture and purpose

• Smart contract manual code review and walk-through

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Local deployment (Brownie, Hardhat, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

The security assessment was scoped to the following smart contracts:

• BnbX.sol

• StakeManager.sol

• IBnbX.sol

• IStakeManager.sol

Commit ID: 2ddf3e2c30321587742630de90a1414434ff256f

Remediation commit ID d56ab580231c56531edbb780387e1c711236c85d

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/bnbX/tree/2ddf3e2c30321587742630de90a1414434ff256f
https://github.com/stader-labs/bnbX/tree/2ddf3e2c30321587742630de90a1414434ff256f/
https://github.com/stader-labs/bnbX/tree/d56ab580231c56531edbb780387e1c711236c85d

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 1 1 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

(HAL-03)

(HAL-04)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - INTEGER UNDERFLOW High SOLVED - 07/12/2022

HAL02 - CALLING
increaseTotalRedelegated BEFORE
USER DEPOSITS MAY CAUSE USER

GETTING 0 BNBX

Medium SOLVED - 07/12/2022

HAL03 - CONTRACTS ARE NOT USING
disableInitializers FUNCTION

Low SOLVED - 07/12/2022

HAL04 - MISSING ADDRESS CHECK Informational SOLVED - 07/12/2022

10

EX
EC

UT
IV

E
OV

ER
VI

EW

11

FINDINGS & TECH
DETAILS

3.1 (HAL-01) INTEGER UNDERFLOW -
HIGH

Description:

Calling the increaseTotalRedelegated function is causing an integer un-

derflow in startUndelegation function.

If the totalRedelegated amount is increased by calling increaseTotalRedelegated

, the startUndelegation transaction will revert with: Arithmetic

operation underflowed or overflowed outside an unchecked block error

(in Solidity > 0.8).

Because the undelegation process will fail, the user will not be able to

withdraw the deposited BNB.

Code Location:

The startUndelegation function performs a subtraction:

Listing 1: StakeManager.sol (Line 282)

265 function startUndelegation ()

266 external

267 override

268 whenNotPaused

269 onlyRole(BOT)

270 returns (uint256 _uuid , uint256 _amount)

271 {

272 require(totalBnbToWithdraw > 0, "No Request to withdraw");

273

274 _uuid = undelegateUUID ++;

275 _amount = totalBnbToWithdraw;

276 uuidToBotUndelegateRequestMap[_uuid] = BotUndelegateRequest(

277 block.timestamp ,

278 0,

279 _amount

280);

281

282 totalDeposited -= _amount;

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

283 uint256 bnbXToBurn = totalBnbXToBurn; // To avoid Reentrancy

ë attack

284 totalBnbXToBurn = 0;

285 totalBnbToWithdraw = 0;

286

287 IBnbX(bnbX).burn(address(this), bnbXToBurn);

288 }

Where totalDeposited is an amount of deposited BNB and _amount is the

value of totalBnbToWithdraw which is calculated in the requestWithdraw

function:

Listing 2: StakeManager.sol (Lines 193,206)

191 function requestWithdraw(uint256 _amount) external override

ë whenNotPaused {

192 require(_amount > 0, "Invalid Amount");

193 uint256 amountInBnb = convertBnbXToBnb(_amount);

194

195 IERC20Upgradeable(bnbX).safeTransferFrom(

196 msg.sender ,

197 address(this),

198 _amount

199);

200 uint256 totalStakedBnb = getTotalStakedBnb ();

201 require(

202 amountInBnb <= (totalStakedBnb - totalBnbToWithdraw),

203 "Not enough BNB to withdraw"

204);

205

206 totalBnbToWithdraw += amountInBnb;

207 totalBnbXToBurn += _amount;

208 userWithdrawalRequests[msg.sender].push(

209 WithdrawalRequest(undelegateUUID , amountInBnb , block.

ë timestamp)

210);

211

212 emit RequestWithdraw(msg.sender , _amount , amountInBnb);

213 }

The value taken from convertBnbXToBnb is added to totalBnbToWithdraw.

The convertBnbXToBnb function calculates its value based on the output

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

from getTotalPooledBnb:

Listing 3: StakeManager.sol (Line 455)

455 uint256 totalPooledBnb = getTotalPooledBnb ();

Which is using totalRedelegated set by increaseTotalRedelegated function:

Listing 4: StakeManager.sol (Line 348)

347 function getTotalPooledBnb () public view override returns (uint256

ë) {

348 return (totalDeposited + totalRedelegated);

349 }

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

Make sure that calculations performed by other functions are not affected

by increasing delegated/staked amount with increaseTotalRedelegated.

Remediation Plan:

SOLVED: The addRestakingRewards function (previously called

increaseTotalRedelegated), now contains a check: the amount del-

egated must be greater than 0 to increase. Also, the startUndelegation

function recalculates the BnbX/BNB ratio, instead of using a previously

calculated one.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) CALLING
increaseTotalRedelegated BEFORE
USER DEPOSITS MAY CAUSE USER
GETTING 0 BNBX - MEDIUM

Description:

If the increaseTotalRedelegated function is called when totalDeposited is

0 and the increased amount is greater than the amount of coins deposited

by the first user, the depositor will get 0 BnbX tokens.

Scenario:

• The amount deposited is 0 (no one deposited yet)

• increaseTotalRedelegated function is called with 10 BNB as parameter

• User deposits 1 BNB

Result:

The user gets 0 BnbX in return for a deposit of 1 BNB.

Code Location:

Listing 5: StakeManager.sol (Line 435)

426 function convertBnbToBnbX(uint256 _amount)

427 public

428 view

429 override

430 returns (uint256)

431 {

432 uint256 totalShares = IBnbX(bnbX).totalSupply ();

433 totalShares = totalShares == 0 ? 1 : totalShares;

434

435 uint256 totalPooledBnb = getTotalPooledBnb ();

436 totalPooledBnb = totalPooledBnb == 0 ? 1 : totalPooledBnb;

437

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

438 uint256 amountInBnbX = (_amount * totalShares) /

ë totalPooledBnb;

439

440 return amountInBnbX;

441 }

The getTotalPooledBnb calculation:

Listing 6: StakeManager.sol (Line 348)

347 function getTotalPooledBnb () public view override returns (uint256

ë) {

348 return (totalDeposited + totalRedelegated);

349 }

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Consider changing the conversion calculation logic, so that increasing

the amount delegated/staked has less of an impact on first deposits.

Remediation Plan:

SOLVED: The addRestakingRewards (previously called as increaseTotalRedelegated

) function, now contains a check: the amount delegated must be greater

than 0 to increase. This solves the problem of first depositor getting

0 BnbX tokens: Reference

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/bnbX/blob/main/contracts/StakeManager.sol#L199

3.3 (HAL-03) CONTRACTS ARE NOT USING
disableInitializers FUNCTION - LOW

Description:

StakeManager and BnbX contracts use Open Zeppelin’s Initializable mod-

ule. According to the Open Zeppelin guidelines the _disableInitializers

function call should be added to the constructor to lock the contracts

after the deployment.

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Consider calling the _disableInitializers function in the contract’s

constructor:

Listing 7

1 /// @custom:oz -upgrades -unsafe -allow constructor

2 constructor () {

3 _disableInitializers ();

4 }

Remediation Plan:

SOLVED: The constructor with call to _disableInitializers() was added to

StakeManager and BnbX contracts.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://github.com/stader-labs/bnbX/blob/d56ab580231c56531edbb780387e1c711236c85d/contracts/StakeManager.sol#L54
https://github.com/stader-labs/bnbX/blob/d56ab580231c56531edbb780387e1c711236c85d/contracts/BnbX.sol#L16

3.4 (HAL-04) MISSING ADDRESS
CHECK - INFORMATIONAL

Description:

The lack of zero address validation has been found in many instances when

assigning user-supplied address values to state variables directly.

Code Location:

BnbX.sol, #37-49

The setStakeManager function allows a stakeManager address to be set to

0x0.

StakeManager.sol, #70-73

The initialize function of StakeManager contact does not check passed in

addresses to be different from 0.

StakeManager.sol, #326-338

The setBotAddress function allows a bot address to be set to 0x0.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Add proper address validation when each state variable assignment is made

from user-supplied input.

Remediation Plan:

SOLVED: Added zero address checks in commit 4e04e46729153b6cb50d2ce4da2f807611fcc4d8

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/bnbX/blob/2ddf3e2c30321587742630de90a1414434ff256f/contracts/BnbX.sol#L45
https://github.com/stader-labs/bnbX/blob/2ddf3e2c30321587742630de90a1414434ff256f/contracts/StakeManager.sol#L70
https://github.com/stader-labs/bnbX/blob/2ddf3e2c30321587742630de90a1414434ff256f/contracts/StakeManager.sol#L334
https://github.com/stader-labs/bnbX/commit/4e04e46729153b6cb50d2ce4da2f807611fcc4d8

19

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

StakeManager.sol

Listing 8

1 StakeManager.startDelegation () (contracts/StakeManager.sol

ë #103 -142) ignores return value by ITokenHub(tokenHub).transferOut{

ë value: (amount + relayFeeReceived)}(address (0),bcDepositWallet ,

ë amount ,expireTime) (contracts/StakeManager.sol #131 -136)

2 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#unused -return

3

4 StakeManager.initialize(address ,address ,address ,address ,address).

ë _bnbX (contracts/StakeManager.sol #58) lacks a zero -check on :

5 - bnbX = _bnbX (contracts/StakeManager.sol #70)

6 StakeManager.initialize(address ,address ,address ,address ,address).

ë _tokenHub (contracts/StakeManager.sol #60) lacks a zero -check on :

7 - tokenHub = _tokenHub (contracts/StakeManager.sol #71)

8 StakeManager.initialize(address ,address ,address ,address ,address).

ë _bcDepositWallet (contracts/StakeManager.sol #61) lacks a zero -

ë check on :

9 - bcDepositWallet = _bcDepositWallet (contracts/

ë StakeManager.sol #72)

10 StakeManager.initialize(address ,address ,address ,address ,address).

ë _bot (contracts/StakeManager.sol #62) lacks a zero -check on :

11 - bot = _bot (contracts/StakeManager.sol #73)

20

AU
TO

MA
TE

D
TE

ST
IN

G

12 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#missing -zero -address -validation

13

14 Reentrancy in StakeManager.requestWithdraw(uint256) (contracts/

ë StakeManager.sol #191 -213):

15 External calls:

16 - IERC20Upgradeable(bnbX).safeTransferFrom(msg.sender ,address(

ë this),_amount) (contracts/StakeManager.sol #195 -199)

17 State variables written after the call(s):

18 - totalBnbToWithdraw += amountInBnb (contracts/StakeManager.

ë sol #206)

19 - totalBnbXToBurn += _amount (contracts/StakeManager.sol #207)

20 - userWithdrawalRequests[msg.sender].push(WithdrawalRequest(

ë undelegateUUID ,amountInBnb ,block.timestamp)) (contracts/

ë StakeManager.sol #208 -210)

21 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#reentrancy -vulnerabilities -2

22

23 Reentrancy in StakeManager.claimWithdraw(uint256) (contracts/

ë StakeManager.sol #215 -235):

24 External calls:

25 - AddressUpgradeable.sendValue(address(user),amount) (

ë contracts/StakeManager.sol #232)

26 Event emitted after the call(s):

27 - ClaimWithdrawal(user ,_idx ,amount) (contracts/StakeManager.

ë sol #234)

28 Reentrancy in StakeManager.requestWithdraw(uint256) (contracts/

ë StakeManager.sol #191 -213):

29 External calls:

30 - IERC20Upgradeable(bnbX).safeTransferFrom(msg.sender ,address(

ë this),_amount) (contracts/StakeManager.sol #195 -199)

31 Event emitted after the call(s):

32 - RequestWithdraw(msg.sender ,_amount ,amountInBnb) (contracts/

ë StakeManager.sol #212)

33 Reentrancy in StakeManager.startDelegation () (contracts/

ë StakeManager.sol #103 -142):

34 External calls:

35 - ITokenHub(tokenHub).transferOut{value: (amount +

ë relayFeeReceived)}(address (0),bcDepositWallet ,amount ,expireTime) (

ë contracts/StakeManager.sol #131 -136)

36 Event emitted after the call(s):

37 - TransferOut(amount) (contracts/StakeManager.sol #138)

38 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#reentrancy -vulnerabilities -3

21

AU
TO

MA
TE

D
TE

ST
IN

G

39

40 StakeManager.completeDelegation(uint256) (contracts/StakeManager.

ë sol #149 -166) uses timestamp for comparisons

41 Dangerous comparisons:

42 - require(bool ,string)((uuidToBotDelegateRequestMap[_uuid].

ë amount > 0) && (uuidToBotDelegateRequestMap[_uuid]. endTime == 0),

ë Invalid UUID) (contracts/StakeManager.sol #155 -159)

43 StakeManager.claimWithdraw(uint256) (contracts/StakeManager.sol

ë #215 -235) uses timestamp for comparisons

44 Dangerous comparisons:

45 - require(bool ,string)(uuidToBotUndelegateRequestMap[uuid].

ë endTime != 0,Not able to claim yet) (contracts/StakeManager.sol

ë #225 -228)

46 StakeManager.isClaimable(address ,uint256) (contracts/StakeManager.

ë sol #243 -257) uses timestamp for comparisons

47 Dangerous comparisons:

48 - _isClaimable = (uuidToBotUndelegateRequestMap[uuid]. endTime

ë != 0) (contracts/StakeManager.sol #256)

49 StakeManager.completeUndelegation(uint256) (contracts/StakeManager

ë .sol #297 -318) uses timestamp for comparisons

50 Dangerous comparisons:

51 - require(bool ,string)((uuidToBotUndelegateRequestMap[_uuid].

ë amount > 0) && (uuidToBotUndelegateRequestMap[_uuid]. endTime == 0)

ë ,Invalid UUID) (contracts/StakeManager.sol #304 -308)

52 - require(bool ,string)(amount == uuidToBotUndelegateRequestMap

ë [_uuid].amount ,Incorrect Amount of Fund) (contracts/StakeManager.

ë sol #311 -314)

53 Reference: https :// github.com/crytic/slither/wiki/Detector -

ë Documentation#block -timestamp

54 contracts/StakeManager.sol analyzed (15 contracts with 57

ë detectors), 13 result(s) found

BnbX.sol:

Listing 9

1 contracts/BnbX.sol analyzed (13 contracts with 57 detectors), 0

ë result(s) found

As a result of the tests carried out with the Slither tool, some results

were obtained and reviewed by Halborn. Based on the results reviewed,

some vulnerabilities were determined to be false positives.

22

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Scenario
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

