
Stader Labs -
Hedera Stader
Protocol v3

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: Oct 21st, 2022 - Nov 11th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 6

CONTACTS 6

1 EXECUTIVE OVERVIEW 8

1.1 INTRODUCTION 9

1.2 AUDIT SUMMARY 9

1.3 TEST APPROACH & METHODOLOGY 9

RISK METHODOLOGY 10

1.4 SCOPE 12

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 13

3 FINDINGS & TECH DETAILS 14

3.1 (HAL-01) TIMELOCK CAN BE BYPASSED - MEDIUM 16

Description 16

Code Location 16

Risk Level 17

Proof of Concept 18

Recommendation 18

Remediation Plan 19

3.2 (HAL-02) LACK OF TRANSFEROWNERSHIP PATTERN - LOW 20

Description 20

Risk Level 20

Recommendation 20

Remediation Plan 21

3.3 (HAL-03) DIFFERENT PROXYNODE ARRAY LENGTH REQUIREMENTS - LOW

22

Description 22

1

Risk Level 24

Recommendation 24

Remediation Plan 24

3.4 (HAL-04) MISSING ZERO ADDRESS CHECKS - LOW 25

Description 25

Code Location 25

Risk Level 25

Recommendation 26

Remediation Plan 26

3.5 (HAL-05) LACK OF PARAMETER LIMITS - LOW 27

Description 27

Code Location 27

Risk Level 28

Recommendation 28

Remediation Plan 29

3.6 (HAL-06) MISSING REENTRANCY GUARD - LOW 30

Description 30

Code Location 30

Risk Level 31

Recommendation 31

Remediation Plan 31

3.7 (HAL-07) NODEPROXY ARRAY CANNOT BE MODIFIED - INFORMATIONAL 32

Description 32

Code Location 32

Risk Level 33

Recommendation 33

2

Remediation Plan 33

3.8 (HAL-08) FLOATING PRAGMA - INFORMATIONAL 34

Description 34

Risk Level 34

Recommendation 34

Remediation Plan 34

3.9 (HAL-09) CACHE ARRAY LENGTH IN FOR LOOPS CAN SAVE GAS - INFOR-

MATIONAL 35

Description 35

Code Location 35

Risk Level 36

Recommendation 36

Remediation Plan 36

3.10 (HAL-10) USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS - INFORMA-

TIONAL 37

Description 37

Risk Level 37

Recommendation 37

Remediation Plan 37

3.11 (HAL-11) REVERT STRING SIZE OPTIMIZATION - INFORMATIONAL 38

Description 38

Code Location 38

Risk Level 38

Recommendation 38

Remediation Plan 38

3.12 (HAL-12) UNUSED EVENTS - INFORMATIONAL 39

Description 39

3

Code Location 39

Risk Level 39

Recommendation 40

Remediation Plan 40

3.13 (HAL-13) UNNECESSARY CHECK - INFORMATIONAL 41

Description 41

Code Location 41

Risk Level 42

Recommendation 42

Remediation Plan 42

3.14 (HAL-14) NO NEED TO INITIALIZE VARIABLES WITH DEFAULT VALUES -

INFORMATIONAL 43

Description 43

Code Location 43

Risk Level 44

Recommendation 44

Remediation Plan 44

3.15 (HAL-15) USING POSTFIX OPERATORS IN LOOPS - INFORMATIONAL 45

Description 45

Code Location 45

Risk Level 45

Recommendation 45

Remediation Plan 46

3.16 (HAL-16) DIVISION BY ZERO - INFORMATIONAL 47

Description 47

Code Location 47

4

Risk Level 47

Recommendation 47

Remediation Plan 48

3.17 (HAL-17) SPLITTING REQUIRE() STATEMENTS THAT USES AND OPERATOR

SAVES GAS - INFORMATIONAL 49

Description 49

Code Location 49

Proof of Concept 49

Risk Level 50

Recommendation 50

Remediation Plan 50

4 MANUAL TESTING 51

4.1 INTRODUCTION 52

4.2 TESTING 53

REWARD MECHANISM 53

WITHDRAW FUNDS MECHANISM 56

UNDELEGATION MECHANISM 60

5 AUTOMATED TESTING 64

5.1 STATIC ANALYSIS REPORT 65

Description 65

Slither results 65

5

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/26/2022 Kaan Caglan

0.2 Draft Updates 10/27/2022 Kubilay Onur Gungor

0.3 Draft Updates 10/30/2022 Kaan Caglan

0.4 Draft Updates 11/01/2022 Francisco González

0.5 Draft Review 11/03/2022 Gabi Urrutia

1.0 Remediation Plan 11/04/2022 Francisco González

1.1
Remediation Plan

Updates
11/05/2022 Francisco González

1.2 Remediation Plan Review 11/05/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

Kaan Caglan Halborn Kaan.Caglan@halborn.com

Francisco
González

Halborn Francisco.Villarejo@halborn.com

7

mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Kaan.Caglan@halborn.com
mailto:Francisco.Villarejo@halborn.com

8

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Stader Labs engaged Halborn to conduct a security audit on their smart

contracts beginning on October 21st, 2022 and ending on November 11th,

2022. The security assessment was scoped to the smart contracts provided

in the GitHub repositories stader-labs/hedera-stader-protocol-v1

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full-time security engineer to audit the security of the smart contracts.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks were mostly addressed

by the Stader Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/hedera-stader-protocol-v1/tree/eef82c8d5252f56d3357dd1ba4c1fc788e7faabd

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/functions.

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment. (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

11

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contract:

• Undelegation.sol

• Timelock.sol

• Staking.sol

• Rewards.sol

• Ownable.sol

• NodeProxy.sol

Audit Commit ID :

- eef82c8d5252f56d3357dd1ba4c1fc788e7faabd

Fixed Commit ID :

- b04fc3be788a6d698071ceb77f6fe844e0ded0e7

Fixed Updated Commit ID:

- c88a979fabb1f1338683d2687155558f7b006b4c

12

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/hedera-stader-protocol-v1/tree/eef82c8d5252f56d3357dd1ba4c1fc788e7faabd
https://github.com/stader-labs/hedera-stader-protocol-v1/tree/b04fc3be788a6d698071ceb77f6fe844e0ded0e7
https://github.com/stader-labs/hedera-stader-protocol-v1/tree/c88a979fabb1f1338683d2687155558f7b006b4c

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 1 5 11

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-03)

(HAL-07)

(HAL-02)
(HAL-04)
(HAL-05)
(HAL-06)

(HAL-08)
(HAL-09)
(HAL-10)
(HAL-11)
(HAL-12)
(HAL-13)
(HAL-14)
(HAL-15)
(HAL-16)
(HAL-17)

13

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - TIMELOCK CAN BE BYPASSED Medium SOLVED - 11/05/2022

HAL02 - LACK OF TRANSFEROWNERSHIP
PATTERN

Low SOLVED - 11/05/2022

HAL03 - DIFFERENT PROXYNODE ARRAY
LENGTH REQUIREMENTS

Low SOLVED - 11/04/2022

HAL04 - MISSING ZERO ADDRESS CHECKS Low SOLVED - 11/04/2022

HAL05 - LACK OF PARAMETER LIMITS Low
PARTIALLY SOLVED -

11/04/2022

HAL06 - MISSING REENTRANCY GUARD Low SOLVED - 11/04/2022

HAL07 - NODEPROXY ARRAY CANNOT BE
MODIFIED

Informational ACKNOWLEDGED

HAL08 - FLOATING PRAGMA Informational SOLVED - 11/04/2022

HAL09 - CACHE ARRAY LENGTH IN FOR
LOOPS CAN SAVE GAS

Informational SOLVED - 11/04/2022

HAL10 - USE CUSTOM ERRORS INSTEAD
OF REVERT STRINGS

Informational
PARTIALLY SOLVED -

11/05/2022

HAL11 - REVERT STRING SIZE
OPTIMIZATION

Informational ACKNOWLEDGED

HAL12 - UNUSED EVENTS Informational SOLVED - 11/04/2022

HAL13 - UNNECESSARY CHECK Informational ACKNOWLEDGED

HAL14 - NO NEED TO INITIALIZE
VARIABLES WITH DEFAULT VALUES

Informational ACKNOWLEDGED

HAL15 - USING POSTFIX OPERATORS IN
LOOPS

Informational ACKNOWLEDGED

HAL16 - DIVISION BY ZERO Informational SOLVED - 11/04/2022

HAL17 - SPLITTING REQUIRE()
STATEMENTS THAT USES AND OPERATOR

SAVES GAS
Informational SOLVED - 11/04/2022

14

EX
EC

UT
IV

E
OV

ER
VI

EW

15

FINDINGS & TECH
DETAILS

3.1 (HAL-01) TIMELOCK CAN BE
BYPASSED - MEDIUM

Description:

Timelock contract is used to queue the transfer of HBAR from the previous

Staking contract to the new one. It introduces a lockedPeriod parameter,

defining the minimum time between a withdrawal is requested and when it

can be completed.

However, it has been detected that the address defined in timelockOwner

can either queue funds that could be transferred once lockedPeriod has

passed by and also can call setLockedPeriod(), which defines the value

of lockedPeriod.

Since the same user who calls queuePartialFunds() or queueAllFunds() can

set lockedPeriod by calling setLockedPeriod(), Timelock functionalities

can be trivially bypassed by an ill-intentioned user with enough

privileges, defeating the whole purpose of the contract.

Code Location:

Listing 1: Timelock.sol (Lines 64,84)

61 function queuePartialFunds(address payable to , uint256 amount)

62 external

63 checkZeroAddress(to)

64 checkOwner

65 returns (uint256)

66 {

67 if (amount > address(this).balance) revert("Amount exceeds

ë balance");

68 uint256 index = withdrawQueue.length;

69 Withdraw memory withdrawData = Withdraw ({

70 timestamp: block.timestamp ,

71 lockedAmount: amount ,

72 to: to

73 });

74 withdrawQueue.push(withdrawData);

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75 emit Queued(index , amount);

76 return index;

77 }

78

79 /// @notice queue the transaction for withdrawal of the entire

ë contract balance

80 /// @param to address of the account to transfer the tokens to

81 function queueAllFunds(address payable to)

82 external

83 checkZeroAddress(to)

84 checkOwner

85 returns (uint256)

86 {

87 uint256 index = withdrawQueue.length;

88 Withdraw memory userTransaction = Withdraw ({

89 timestamp: block.timestamp ,

90 lockedAmount: address(this).balance ,

91 to: to

92 });

93 withdrawQueue.push(userTransaction);

94 emit Queued(index , address(this).balance);

95 return index;

96 }

Listing 2: Timelock.sol (Line 146)

144 /// @notice Set the locking period for the transfer of tokens

145 /// @param _lockedPeriod time in secs for withholding transfer

ë transaction

146 function setLockedPeriod(uint256 _lockedPeriod) external

ë checkOwner {

147 lockedPeriod = _lockedPeriod;

148 }

Risk Level:

Likelihood - 1

Impact - 5

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

For this Proof of Concept, the user with Owner privileges in Timelock

contract will extract immediately the whole balance of Staking contract.

To do so, setLockedPeriod() will be called to set a 0 lock period, and then

queueAllFunds() and withdraw() will be called consecutively, extracting

the complete balance stored in the contract, defeating the purpose of a

Time Lock.

Recommendation:

Multiple measures are recommended to enforce the correct use of Timelock:

• Separate the roles in charge of setting lockedPeriod and transferring

balances.

• Protect setLockedPeriod() function itself with a Time Lock.

• Add a require statement containing the minimum acceptable value for

lockedPeriod.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

If this finding poses no security risk at all, then deleting Timelock

contract is recommended for saving gas and using a regular transfer

function instead.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by blocking the owner

to set the lockedPeriod variable less than 2 days.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) LACK OF
TRANSFEROWNERSHIP PATTERN - LOW

Description:

The current ownership transfer process for Timelock contract involves the

current owner calling the setTimeLockOwner() function:

Listing 3: Timelock.sol

134 /// @notice Set new multisig owner for the transfer of Hbar to

ë new version

135 /// @param _timelockOwner the new owner of Hbar withdrawal to

ë new version

136 function setTimeLockOwner(address _timelockOwner)

137 external

138 checkZeroAddress(_timelockOwner)

139 checkOwner

140 {

141 timelockOwner = _timelockOwner;

142 }

If the nominated EOA account is not a valid account, it is entirely

possible that the owner may accidentally transfer ownership to an

uncontrolled account, losing the access to all functions with the

checkOwner modifier.

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to implement a two-step process where the owner nominates

an account and the nominated account needs to call an acceptOwnership()

function for the transfer of the ownership to fully succeed. This ensures

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

the nominated EOA account is a valid and active account.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by implementing a

two-step process.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) DIFFERENT PROXYNODE
ARRAY LENGTH REQUIREMENTS - LOW

Description:

It has been observed that two functions check the length of the input

array and compare it to the length of nodeProxyAddresses array in Staking

contract, but they do it differently.

collectRewards takes an input array which defines from which contracts

rewards will be collected, and a require statement enforces that the

length of the array is equal than nodeProxyAddresses length:

Listing 4: Staking.sol (Line 294)

286 function collectRewards(uint256 [] memory

ë pendingRewardNodeIndexes)

287 external

288 payable

289 whenNotPaused

290 onlyOperator

291 {

292 require(nodeStakingActive , "node staking not active");

293 require(

294 pendingRewardNodeIndexes.length == nodeProxyAddresses.

ë length ,

295 "Invalid pendingRewardNodeIndexes input"

296);

297 for (uint256 i; i < nodeProxyAddresses.length; i++) {

298 if (pendingRewardNodeIndexes[i] == 1) {

299 require(

300 address(this).balance >= 1,

301 "Insufficient balance to execute

ë collectRewards"

302);

303 moveBalanceForStaking(nodeProxyAddresses[i], 1);

304 }

305 }

306 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

On the other hand, stakeWithNodes takes as input a similar array in

which each index of the position corresponds with each index of the

nodeProxyAddresses array. However, this time, the require statement

only checks for that array to have the same or lower length than

nodeProxyAddresses:

Listing 5: Staking.sol (Line 247)

239 function stakeWithNodes(uint256 [] calldata amountToSend ,

ë uint256 index)

240 external

241 whenNotPaused

242 onlyOperator

243 {

244 require (! nodeStakingActive , "node staking already active")

ë ;

245 require(index < nodeProxyAddresses.length , "Invalid index"

ë);

246 require(

247 amountToSend.length <= nodeProxyAddresses.length ,

248 "Invalid size of amountToSend"

249);

250 nodeStakingActive = true;

251 balanceBefore = address(this).balance;

252 // iterating over amountToSend array to send hbar to

ë respective index of nodeProxyContract

253 // following checks are to incorporate changes in the

ë staking contract balance after computing amountToSend

254 for (uint256 i = 0; i < amountToSend.length; i++) {

255 if (

256 amountToSend[i] > 0 &&

257 address(this).balance > 0 &&

258 address(this).balance >= amountToSend[i]

259) {

260 moveBalanceForStaking(nodeProxyAddresses[i],

ë amountToSend[i]);

261 } else if (

262 amountToSend[i] > 0 &&

263 address(this).balance > 0 &&

264 amountToSend[i] > address(this).balance

265) {

266 moveBalanceForStaking(

267 nodeProxyAddresses[i],

268 address(this).balance

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

269);

270 }

271 }

272 if (address(this).balance > 0) {

273 moveBalanceForStaking(

274 nodeProxyAddresses[index],

275 address(this).balance

276);

277 }

278 emit stakedWithNodes(balanceBefore);

279 }

280

Having two arrays in which each position corresponds with the same position

of nodeProxyAddresses array but with different length requirements might

be confusing and error-prone, since the absence of a single position in

amountToSend could mean that every amount defined in the array is staked

into the wrong node.

Risk Level:

Likelihood - 1

Impact - 3

Recommendation:

It is recommended to unify the criteria of the require statements on

both functions, enforcing that amountToSend array has the same length of

nodeProxyAddresses to prevent confusions or any input error.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by requiring amountToSend

to have the same length as nodeProxyAddresses.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) MISSING ZERO ADDRESS
CHECKS - LOW

Description:

The constructor of the Rewards.sol contract is missing address validation.

Every address should be validated and checked that it is different from

zero. Control of that constructor is wrong because of the or statement

between them. Because of that issue, either the _stakerAddress variable

or _daoAddress might be a 0 address, and it can cause an unintended loss

in the distributeStakingRewards function. This is also considered a best

practice.

Code Location:

Listing 6: Rewards.sol (Line 61)

59 constructor(address payable _stakerAddress , address payable

ë _daoAddress) {

60 require(

61 _stakerAddress != address (0) || _daoAddress != address

ë (0),

62 "Address cannot be a zero"

63);

64 stakerAddress = _stakerAddress;

65 daoAddress = _daoAddress;

66 genesisTimestamp = block.timestamp;

67 lastRedeemedTimestamp = genesisTimestamp;

68 // _pause ();

69 }

Risk Level:

Likelihood - 2

Impact - 2

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to validate that every address input is different from

zero.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by enforcing separate

zero address checks on each of the input addresses.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) LACK OF PARAMETER
LIMITS - LOW

Description:

It has been detected that some parameter modifying functions do not have

logical limits. This may cause the contract to function with parameter

values that, although allowed, make no sense in the context of the

application, which might cause a variety of problems or even rendering

the contract unusable.

There are two functions in Undelegation.sol and Timelock.sol contracts

that should have a minimum value check in place. These functions determine

the minimum time needed for being able to unstake HBAR from Staking

contract and for transferring funds from the old staking contract to the

new one, respectively.

Having no minimum value check means that HBAR could be immediately unstaked

or Timelock could be bypassed.

Similarly, it is recommended to define some boundaries on Staking.sol's

minDeposit and maxDeposit, since setting a minDeposit value too high or

a maxDeposit value too low (or zero) would prevent anyone from being able

to stake HBAR.

Code Location:

Listing 7: "Timelock.sol

146 function setLockedPeriod(uint256 _lockedPeriod) external

ë checkOwner {

147 lockedPeriod = _lockedPeriod;

148 }

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 8: "Undelegation.sol

97 function setUnbondingTime(uint256 _unbondingTime) external

ë onlyOwner {

98 unbondingTime = _unbondingTime;

99 emit NewUnbondingTime(unbondingTime);

100 }

Listing 9: "Staking.sol

393 /// @notice Set minimum deposit amount (onlyOwner)

394 /// @param _newMinDeposit the minimum deposit amount in

ë multiples of 10**8

395 function updateMinDeposit(uint256 _newMinDeposit) external

ë onlyOwner {

396 minDeposit = _newMinDeposit;

397 }

398

399 /// @notice Set maximum deposit amount (onlyOwner)

400 /// @param _newMaxDeposit the maximum deposit amount in

ë multiples of 10**8

401 function updateMaxDeposit(uint256 _newMaxDeposit) external

ë onlyOwner {

402 maxDeposit = _newMaxDeposit;

403 }

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to enforce logical value limits for critical parameters

and check for additional occurrences of this same vulnerability.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

PARTIALLY SOLVED: The Stader Labs team partially solved this finding by

adding some logical checks on the Staking.sol contract, enforcing that

minDeposit is lower than maxDeposit, and maxDeposit is greater than

minDeposit.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) MISSING REENTRANCY
GUARD - LOW

Description:

To protect against cross-function re-entrancy attacks, it may be necessary

to use a mutex. By using this lock, an attacker can no longer exploit

the withdrawal function with a recursive call. OpenZeppelin has its own

mutex implementation called ReentrancyGuard which provides a modifier to

any function called nonReentrant that guards the function with a mutex

against re-entrancy attacks.

Code Location:

Listing 10: Timelock.sol

100 function withdraw(uint256 index) external returns (uint256) {

101 if (address(this).balance == 0) revert("No funds to

ë withdraw");

102 if (index >= withdrawQueue.length) revert("Invalid index")

ë ;

103 Withdraw storage withdrawData = withdrawQueue[index];

104 if (withdrawData.timestamp + lockedPeriod >= block.

ë timestamp)

105 revert("Unlock period not expired");

106 if (withdrawData.lockedAmount == 0) revert("Amount not

ë available");

107 address payable to = withdrawData.to;

108 uint256 amount = withdrawData.lockedAmount;

109 delete withdrawQueue[index];

110 // payable(to).transfer(amount);

111 Address.sendValue(payable(to), amount);

112 emit Transferred(index , amount , to);

113 return index;

114 }

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

The functions on the code location section have missing nonReentrant

modifiers. It is recommended to add the OpenZeppelin ReentrancyGuard

library to the project and use the nonReentrant modifier to avoid

introducing future re-entrancy vulnerabilities.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by adding the

nonReentrant modifier to the withdraw() function on the Timelock.sol

contract.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) NODEPROXY ARRAY CANNOT
BE MODIFIED - INFORMATIONAL

Description:

For each node in Hedera network, a NodeProxy contract will be deployed.

Each one of these contracts is assigned to one node, and staking on one

of the contracts will effectively mean the same as staking on the node

itself.

The addresses of these contracts are stored in nodeProxyAddresses array,

set in Staking contract’s constructor function.

However, there is no way to modify the addresses contained in the array, so

any eventuality related with Hedera nodes might potentially render Staking

contract partially or even completely unusable. These eventualities might

be related to node additions, node ID changes, etc.

Code Location:

Listing 11: Staking.sol (Line 110)

104 constructor(

105 address _hbarxAddress ,

106 address _multisigAdminAddress ,

107 address payable _undelegationContractAddress ,

108 uint256 _totalSupply ,

109 address _operator ,

110 address [] memory _nodeProxyAddresses

111)

112 Timelock(_multisigAdminAddress)

113 checkZeroAddress(_hbarxAddress)

114 checkZeroAddress(_undelegationContractAddress)

115 checkZeroAddress(_operator)

116 {

117 hbarxAddress = _hbarxAddress;

118 undelegationContractAddress = _undelegationContractAddress

ë ;

119 totalSupply = _totalSupply;

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

120 operator = _operator;

121 for (uint256 i = 0; i < _nodeProxyAddresses.length; i++) {

122 if (_nodeProxyAddresses[i] == address (0))

123 revert("zero address for nodeProxy");

124 nodeProxyAddresses.push(payable(_nodeProxyAddresses[i

ë]));

125 }

126 }

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to implement a protected function allowing Stader

Labs team to modify nodeProxyAddresses array, adding flexibility in the

eventuality of any node change on Hedera network.

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) FLOATING PRAGMA -
INFORMATIONAL

Description:

Hedera Stader Protocol contracts use floating pragma. Contracts should

be deployed with the same compiler version and flags they have tested

thoroughly. Locking the pragma helps to ensure that contracts do

not accidentally get deployed using, for example, either an outdated

compiler version that might introduce bugs that affect the contract

system negatively or a pragma version that is too new and has not been

extensively tested.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider locking the pragma version with known bugs for the compiler

version. When possible, do not use floating pragma in the final live

deployment. Specifying a fixed compiler version ensures that the bytecode

produced does not vary between builds. This is especially important if

you rely on bytecode-level verification of the code.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by fixing the pragma

version for each contract in scope.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) CACHE ARRAY LENGTH IN
FOR LOOPS CAN SAVE GAS -
INFORMATIONAL

Description:

Reading array length at each iteration of the loop takes 6 gas (3 for

mload and 3 to place memory_offset) in the stack. Caching the array

length in the stack saves around 3 gas per iteration.

Code Location:

Listing 12: Staking.sol (Lines 294,297)

286 function collectRewards(uint256 [] memory

ë pendingRewardNodeIndexes)

287 external

288 payable

289 whenNotPaused

290 onlyOperator

291 {

292 require(nodeStakingActive , "node staking not active");

293 require(

294 pendingRewardNodeIndexes.length == nodeProxyAddresses.

ë length ,

295 "Invalid pendingRewardNodeIndexes input"

296);

297 for (uint256 i; i < nodeProxyAddresses.length; i++) {

Listing 13: Staking.sol (Line 314)

312 function withdrawFromNodes () external whenNotPaused

ë onlyOperator {

313 require(nodeStakingActive , "node staking not active");

314 for (uint256 i; i < nodeProxyAddresses.length; i++) {

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider the cache array length.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by caching the array

length when needed.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) USE CUSTOM ERRORS
INSTEAD OF REVERT STRINGS -
INFORMATIONAL

Description:

Starting from Solidity v0.8.4, there is a convenient and gas-efficient

way to explain to users why an operation failed through the use of

custom errors. If the revert string uses strings to provide additional

information about failures (e.g. require(!isStakePaused, 'Staking is

paused');), but they are rather expensive, especially when it comes

to deploying cost, and it is difficult to use dynamic information in

them.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to implement custom errors instead of revert strings.

Remediation Plan:

PARTIALLY SOLVED: The Stader Labs team partially solved this finding by

changing revert strings to custom errors in a few files.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) REVERT STRING SIZE
OPTIMIZATION - INFORMATIONAL

Description:

Shortening the revert strings to fit within 32 bytes will decrease

deployment time gas and decrease runtime gas when the revert condition

is met.

Revert strings that are longer than 32 bytes require at least one

additional mstore, along with additional overhead to calculate memory

offset, etc. For example:

Code Location:

Listing 14: Rewards.sol

82 require(

83 address(this).balance > 0,

84 "Contract balance is should be greater than 0"

85);

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Shorten the revert strings to fit within 32 bytes. That will affect gas

optimization.

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-12) UNUSED EVENTS -
INFORMATIONAL

Description:

The following events are declared, but they are not emitted by any

function:

Code Location:

NodeProxy.sol

- Line 17:

event Received(address indexed from, uint256 amount);

- Line 20:

event Fallback(address indexed from, uint256 amount);

- Line 29:

event CollectedRewards();

Staking.sol

- Line 70:

event Undelegated(address indexed to, uint256 amount);

Undelegation.sol

- Line 27:

event Received(address from, uint256 amount);

- Line 29:

event Fallback(address from, uint256 amount);

Risk Level:

Likelihood - 1

Impact - 1

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Check whether these events should be used and if not remove them.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by removing unnecessary

events.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.13 (HAL-13) UNNECESSARY CHECK -
INFORMATIONAL

Description:

The distributeStakingRewards function under Rewards.sol does check if

the daoFeesPercentage is less than 100 and then reverts. However, that

condition will never be reachable as the setDaoFeesPercentage function

guarantees that daoFeesPercentage won’t be able to higher or equal to

100.

Code Location:

Listing 15: Rewards.sol (Lines 86,87,88,89)

81 function distributeStakingRewards () external whenNotPaused

ë nonReentrant {

82 require(

83 address(this).balance > 0,

84 "Contract balance is should be greater than 0"

85);

86 require(

87 daoFeesPercentage < 100,

88 "Dao fees percentage should be less than 100"

89);

Listing 16: Rewards.sol (Line 151)

146 function setDaoFeesPercentage(uint256 _daoFeesPercentage)

147 external

148 onlyOwner

149 {

150 require(

151 _daoFeesPercentage < 100,

152 "Dao fees percentage should be less than 100"

153);

154 daoFeesPercentage = _daoFeesPercentage;

155 }

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to remove unnecessary checks to reduce gas costs

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.14 (HAL-14) NO NEED TO INITIALIZE
VARIABLES WITH DEFAULT VALUES -
INFORMATIONAL

Description:

uint256 variables are already initialized to 0 by default. uint256 public

epoch = 0 would reassign the 0 to epoch which wastes gas.

The same occurs with bool and address variables. They are already

initialized to false/address(0).

Code Location:

Rewards.sol

- Line 21:

uint256 public epoch = 0;

Staking.sol

- Line 30:

bool public isStakePaused = false;

- Line 31:

bool public isUnstakePaused = false;

- Line 32:

bool public nodeStakingActive = false;

- Line 36:

uint256 public minDeposit = 0;

- Line 39:

uint256 public totalSupply = 0;

- Line 121:

for (uint256 i = 0; i < _nodeProxyAddresses.length; i++){

- Line 254:

for (uint256 i = 0; i < amountToSend.length; i++){

NodeProxy.sol

- Line 14:

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

address payable public stakerAddress = payable(address(0));

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not initialize uint variables to 0. bool variables

to false and address variables to address(0) to save some gas. For

example, use instead:

uint256 public totalSupply;

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.15 (HAL-15) USING POSTFIX
OPERATORS IN LOOPS - INFORMATIONAL

Description:

In the loops below, postfix operators (e.g. i++) were used to increment

or decrement the value of variables. In loops, using prefix operators

(e.g., ++i) costs less gas per iteration than postfix operators.

Code Location:

Staking.sol

- Line 121:

for (uint256 i = 0; i < _nodeProxyAddresses.length; i++){

- Line 254:

for (uint256 i = 0; i < amountToSend.length; i++){

- Line 297:

for (uint256 i; i < nodeProxyAddresses.length; i++){

- Line 314:

for (uint256 i; i < nodeProxyAddresses.length; i++){

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an

uint variable inside a loop. This does not only apply to the iterator

variable. It also applies to the increments/decrements done inside the

loop code block.

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.16 (HAL-16) DIVISION BY ZERO -
INFORMATIONAL

Description:

Calling the getExchangeRate function with totalSupply as 0 and

nodeStakingActive as true, will cause the function to throw a division

by zero error.

Code Location:

Listing 17: "Staking.sol (Lines 367,368)

365 function getExchangeRate () external view returns (uint256) {

366 ///@dev 1HBar = 100 _000_000 tinybar

367 if (nodeStakingActive) {

368 return (balanceBefore * decimals) / totalSupply;

369 }

370 uint256 exchangeRate = 1 * decimals;

371 if (totalSupply == 0 || address(this).balance == 0) {

372 return exchangeRate;

373 } else {

374 exchangeRate = ((address(this).balance) * decimals) /

ë totalSupply;

375 }

376 return exchangeRate;

377 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Make sure to validate all operands used during a math operation and

inform the user of unappropriated state by reverting the transaction with

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

a custom message.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by validating all

operands before performing math operations.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.17 (HAL-17) SPLITTING REQUIRE()
STATEMENTS THAT USES AND OPERATOR
SAVES GAS - INFORMATIONAL

Description:

Instead of using the && operator in a single require statement to check

multiple conditions, using multiple require statements with one condition

per require statement will save 8 GAS per &&

The gas difference would only be realized if the revert condition is

realized (met).

Code Location:

Listing 18: Staking.sol

138 require(

139 hbarReceived > minDeposit && hbarReceived <=

ë maxDeposit ,

140 "Deposit amount must be within valid range"

141);

Listing 19: Undelegation.sol

62 require(

63 undelegateData.amount != 0 && undelegateData.timestamp

ë != 0,

64 "Undelegation not found"

65);

Proof of Concept:

The following tests were carried out in remix with both optimization

turned on and off

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 20

1 require (a > 1 && a < 5, "Initialized ");

2 return a + 2;

Execution cost

21617 with optimization and using &&

21976 without optimization and using &&

After splitting the require statement

Listing 21

1 require (a > 1 ,"Initialized ");

2 require (a < 5 , "Initialized ");

3 return a + 2;

Execution cost

21609 with optimization and split require

21968 without optimization and using split require

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

For best security practices, consider as much as possible, declaring

events at the end of the function. Events can be used to detect the end

of the operation.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by splitting require

statements.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

51

MANUAL TESTING

4.1 INTRODUCTION

Halborn performed different manual tests in all the different Facets of

the Hedera protocol, trying to find any logic flaws and vulnerabilities.

During the manual tests, the following areas were reviewed carefully :

1. Reward mechanism.

2. Withdraw funds mechanism.

3. Undelegation mechanism.

52

MA
NU

AL
TE

ST
IN

G

4.2 TESTING

REWARD MECHANISM:

In the Rewards.sol contract there is a function named distributeStakingRewards

and this function is responsible to distribute staking rewards among

those with staker address and DAO address.

Listing 22: Rewards.sol

81 function distributeStakingRewards () external whenNotPaused

ë nonReentrant {

82 require(

83 address(this).balance > 0,

84 "Contract balance is should be greater than 0"

85);

86 require(

87 daoFeesPercentage < 100,

88 "Dao fees percentage should be less than 100"

89);

90 uint256 currentTimestamp = block.timestamp;

91 uint256 epochDelta = (currentTimestamp -

ë lastRedeemedTimestamp);

92 lastRedeemedTimestamp = currentTimestamp;

93 epoch ++;

94 uint256 epochRewards = (epochDelta * emissionRate);

95

96 uint256 totalRewards = address(this).balance;

97 if (epochRewards > totalRewards) epochRewards =

ë totalRewards; // this is important

98

99 uint256 daoFees = (epochRewards * daoFeesPercentage) /

ë 100;

100

101 // payable(stakerAddress).transfer(epochRewards - daoFees)

ë ;

102 Address.sendValue(payable(stakerAddress), epochRewards -

ë daoFees);

103 emit DistributedRewards(

104 stakerAddress ,

105 epochRewards - daoFees ,

106 currentTimestamp

107);

53

MA
NU

AL
TE

ST
IN

G

108 // payable(daoAddress).transfer(daoFees);

109 Address.sendValue(payable(daoAddress), daoFees);

110 emit DaoTransfer(daoAddress , daoFees , currentTimestamp);

111 }

This function does not have any kind of msg.sender control, So anyone

would be able to call this function. This function distributes rewards

every 24 hours. A malicious actor can call this function before 24 hours,

but a malicious actor can call this anytime. However, he will not be

able to manipulate this function somehow because of the correctness of

totalRewards and daoFees calculations. Even malicious actor calls this

in 12 hours, rewards will be the same because it always calculates it

with lastRedemeedTiestamp variable.

Listing 23

1 >>> stakerShouldGet

2 272820591741.6

3 >>> stakingContract.balance ()

54

MA
NU

AL
TE

ST
IN

G

4 272820591742

So even attacker calls this function 2 times, in the end staker gets the

same balance because the math is correct. The only difference here is

the precision loss in division operation in solidity. The only way to

exploit this function is to make currentTimestamp variable to be equal

to lastRedeemedTimestamp and if an attacker can do that. epochDelta will

be 0 and eventually staker or DAO won’t be able to get any rewards. But

it’s not likely possible because the attacker can’t send thousands of

transactions to make it pass in the same block time. The average block

time mining in Ethereum is 12 seconds, so the attacker won’t be able to

do this.

55

MA
NU

AL
TE

ST
IN

G

WITHDRAW FUNDS MECHANISM:

In the Timelock.sol contract there is a function named withdraw, with

using this function users can withdraw their funds. And there are two

other functions named queuePartialFunds and queueAllFunds which allow the

owner to queue funds.

Listing 24: Timelock.sol

61 function queuePartialFunds(address payable to , uint256 amount)

62 external

63 checkZeroAddress(to)

64 checkOwner

65 returns (uint256)

66 {

67 if (amount > address(this).balance) revert("Amount exceeds

ë balance");

68 uint256 index = withdrawQueue.length;

69 Withdraw memory withdrawData = Withdraw ({

70 timestamp: block.timestamp ,

71 lockedAmount: amount ,

72 to: to

73 });

74 withdrawQueue.push(withdrawData);

75 emit Queued(index , amount);

76 return index;

77 }

Listing 25: Timelock.sol

81 function queueAllFunds(address payable to)

82 external

83 checkZeroAddress(to)

84 checkOwner

85 returns (uint256)

86 {

87 uint256 index = withdrawQueue.length;

88 Withdraw memory userTransaction = Withdraw ({

89 timestamp: block.timestamp ,

90 lockedAmount: address(this).balance ,

91 to: to

92 });

93 withdrawQueue.push(userTransaction);

56

MA
NU

AL
TE

ST
IN

G

94 emit Queued(index , address(this).balance);

95 return index;

96 }

Listing 26: Timelock.sol, (Lines 109,111)

100 function withdraw(uint256 index) external returns (uint256) {

101 if (address(this).balance == 0) revert("No funds to

ë withdraw");

102 if (index >= withdrawQueue.length) revert("Invalid index")

ë ;

103 Withdraw storage withdrawData = withdrawQueue[index];

104 if (withdrawData.timestamp + lockedPeriod >= block.

ë timestamp)

105 revert("Unlock period not expired");

106 if (withdrawData.lockedAmount == 0) revert("Amount not

ë available");

107 address payable to = withdrawData.to;

108 uint256 amount = withdrawData.lockedAmount;

109 delete withdrawQueue[index];

110 // payable(to).transfer(amount);

111 Address.sendValue(payable(to), amount);

112 emit Transferred(index , amount , to);

113 return index;

114 }

At the end of the withdraw function, contract is sending withdrawData.

lockedAmount amount to withdrawData.to user. Address.sendValue is sending

the given Ethereum amount to the user with .call function.

Listing 27: Address.sol, (Line 63)

60 function sendValue(address payable recipient , uint256 amount)

ë internal {

61 require(address(this).balance >= amount , "Address:

ë insufficient balance");

62

63 (bool success ,) = recipient.call{value: amount }("");

64 require(success , "Address: unable to send value , recipient

ë may have reverted");

65 }

57

MA
NU

AL
TE

ST
IN

G

So in theory it is possible to create another contract to make a

re-entrancy attack because withdraw function does not have any re-entrancy

guard mechanism. However, withdraw function follows the Check-Effects

-Interaction pattern correctly because it is deleting the index before

sending the Ethereum to the user. So, it is not likely possible to do

re-entracy attack in this function. There is no msg.sender control in

this withdraw function, so that means any user can call this withdraw

function with any parameter and withdraw funds for someone else’s Ethereum

to their address, but it is not a vulnerability because at the end the

correct user is funded.

58

MA
NU

AL
TE

ST
IN

G

59

MA
NU

AL
TE

ST
IN

G

UNDELEGATION MECHANISM:

In the Staking.sol contract after users unstake their HBARX to

withdraw their money, unStake function calls the undelegate function of

Undelegation.sol contract.

Listing 28: Staking.sol, (Lines 222,223,224)

189 function unStake(uint256 amount) external whenNotPaused returns (

ë uint256) {

190 require (! nodeStakingActive , "node Staking is active");

191 require (! isUnstakePaused , "Unstaking is paused");

192 uint256 hbarxToBurn = (amount);

193

194 uint256 hbarToTransfer = hbarxToBurn; // exchange rate = 1

195 if (totalSupply != 0) {

196 hbarToTransfer =

197 (hbarxToBurn * ((address(this).balance))) /

198 (totalSupply);

199 }

200

201 ///@dev transfer hbarx to the provided address

202 int256 transferTokenResponse = HederaTokenService.

ë transferToken(

203 hbarxAddress ,

204 msg.sender ,

205 address(this),

206 hbarxToBurn.toInt256 ().toInt64 ()

207);

208

209 if (transferTokenResponse != HederaResponseCodes.SUCCESS)

ë {

210 revert("HBARX transfer failed");

211 }

212

213 ///@dev burn hbarx tokens

214 (int256 burnTokenResponse , uint64 newTotalSupply) =

ë HederaTokenService

215 .burnToken(hbarxAddress , hbarxToBurn.toUint64 (), new

ë int64 [](0));

216 totalSupply = uint256(newTotalSupply);

217 if (burnTokenResponse != HederaResponseCodes.SUCCESS) {

218 revert("HBARX burn failed");

219 }

60

MA
NU

AL
TE

ST
IN

G

220

221 ///@dev move tokens to undelegation contract

222 (bool success ,) = payable(undelegationContractAddress).

ë call{

223 value: hbarToTransfer

224 }(abi.encodeWithSignature("undelegate(address)", msg.

ë sender));

225 if (! success) {

226 revert("Transfer failed");

227 }

228 emit UnStaked(msg.sender , hbarToTransfer , hbarxToBurn);

229 ///@dev return hbars for transaction

230 return hbarToTransfer;

231 }

The only way to call undelegate function is by calling the unStake

function because undelegate function is checking if msg.sender is

stakingContractAddress.

Listing 29: Undelegation.sol, (Lines 44,45,46,47,49)

42 function undelegate(address to) external payable returns (

ë uint256) {

43 require(msg.value > 0, "Undelegate amount must be greater

ë than 0");

44 require(

45 msg.sender == stakingContractAddress ,

46 "Only staking contract can undelegate"

47);

48

49 undelegationsMap[to].push(Undelegate(block.timestamp , msg.

ë value));

50 emit Undelegated(to, msg.value);

51 return msg.value;

52 }

And this function pushes given msg.value and to parameters to

undelegationsMap for each user. After that step, users can call

withdraw function to withdraw their money. withdraw function is

calling Address.sendValue like in Timelock contract. However, in this

case, there is a nonReentrant modifier to block the user to make

61

MA
NU

AL
TE

ST
IN

G

re-entrancy attacks. Even without nonReentrant guard also on the

function Check-Effects-Interaction pattern is used correctly.

Listing 30: Undelegation.sol, (Lines 60,72,74)

60 function withdraw(uint256 index) external whenNotPaused

ë nonReentrant {

61 Undelegate storage undelegateData = undelegationsMap[msg.

ë sender][index];

62 require(

63 undelegateData.amount != 0 && undelegateData.timestamp

ë != 0,

64 "Undelegation not found"

65);

66 require(

67 undelegateData.timestamp + unbondingTime <= block.

ë timestamp ,

68 "Release time not reached"

69);

70

71 uint256 amount = undelegateData.amount;

72 delete undelegationsMap[msg.sender][index];

73 // payable(msg.sender).transfer(amount);

74 Address.sendValue(payable(msg.sender), amount);

75 emit Withdrawn(msg.sender , amount);

76 }

So, it is not possible to make re-entrancy attacks or get more money

than you also deserve in this function.

62

MA
NU

AL
TE

ST
IN

G

63

MA
NU

AL
TE

ST
IN

G

64

AUTOMATED TESTING

5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repositories and was able to compile them

correctly into their ABIs and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

65

AU
TO

MA
TE

D
TE

ST
IN

G

• No major issues were found by Slither.

66

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	INTRODUCTION
	TESTING
	REWARD MECHANISM
	WITHDRAW FUNDS MECHANISM
	UNDELEGATION MECHANISM

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

