// HALBORN

Stader Labs -
Hedera Stader

Protocol v3
Smart Contract Security Audit

Prepared by: Halborn
Date of Engagement: Oct 21st, 2022 - Nov 11th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

3.2

3.3

EXECUTIVE OVERVIEW

INTRODUCTION

AUDIT SUMMARY

TEST APPROACH & METHODOLOGY

RISK METHODOLOGY

SCOPE

ASSESSMENT SUMMARY & FINDINGS OVERVIEW
FINDINGS & TECH DETAILS

(HAL-01) TIMELOCK CAN BE BYPASSED - MEDIUM
Description

Code Location

Risk Level

Proof of Concept

Recommendation

Remediation Plan

(HAL-02) LACK OF TRANSFEROWNERSHIP PATTERN - LOW
Description

Risk Level

Recommendation

Remediation Plan

10

12

13

14

16

16

16

17

18

18

19

20

20

20

20

21

(HAL-03) DIFFERENT PROXYNODE ARRAY LENGTH REQUIREMENTS - LOW

22

Description

22

3.4

3.5

3.

3.

6

7

Risk Level

Recommendation

Remediation Plan

(HAL-04) MISSING ZERO ADDRESS CHECKS - LOW
Description

Code Location

Risk Level

Recommendation

Remediation Plan

(HAL-05) LACK OF PARAMETER LIMITS - LOW
Description

Code Location

Risk Level

Recommendation

Remediation Plan

(HAL-06) MISSING REENTRANCY GUARD - LOW
Description

Code Location

Risk Level

Recommendation

Remediation Plan

(HAL-07) NODEPROXY ARRAY CANNOT BE MODIFIED - INFORMATIONAL
Description

Code Location

Risk Level

Recommendation

24

24

24

25

25

25

25

26

26

27

27

27

28

28

29

30

30

30

31

31

31

32

32

32

33

33

3.

3.

3.

3.

8

9

.10

11

12

Remediation Plan 33

(HAL-@8) FLOATING PRAGMA - INFORMATIONAL 34
Description 34
Risk Level 34
Recommendation 34
Remediation Plan 34
(HAL-@9) CACHE ARRAY LENGTH IN FOR LOOPS CAN SAVE GAS - INFOR-

MATIONAL 35
Description 35
Code Location 35
Risk Level 36
Recommendation 36
Remediation Plan 36
(HAL-10) USE CUSTOM ERRORS INSTEAD OF REVERT STRINGS - INFORMA-
TIONAL 37
Description 37
Risk Level 37
Recommendation 37
Remediation Plan 37

(HAL-11) REVERT STRING SIZE OPTIMIZATION - INFORMATIONAL 38

Description 38
Code Location 38
Risk Level 38
Recommendation 38
Remediation Plan 38
(HAL-12) UNUSED EVENTS - INFORMATIONAL 39

Description 39

3.

13

.14

.15

.16

Code Location 39

Risk Level 39
Recommendation 40
Remediation Plan 40
(HAL-13) UNNECESSARY CHECK - INFORMATIONAL 41
Description 41
Code Location 41
Risk Level 42
Recommendation 42
Remediation Plan 42

(HAL-14) NO NEED TO INITIALIZE VARIABLES WITH DEFAULT VALUES -

INFORMATIONAL 43
Description 43
Code Location 43
Risk Level 44
Recommendation 44
Remediation Plan 44

(HAL-15) USING POSTFIX OPERATORS IN LOOPS - INFORMATIONAL 45

Description 45
Code Location 45
Risk Level 45
Recommendation 45
Remediation Plan 46
(HAL-16) DIVISION BY ZERO - INFORMATIONAL 47
Description 47

Code Location 47

3.

17

4.1

4.2

5P

1

Risk Level 47

Recommendation 47
Remediation Plan 48
(HAL-17) SPLITTING REQUIRE() STATEMENTS THAT USES AND OPERATOR
SAVES GAS - INFORMATIONAL 49
Description 49
Code Location 49
Proof of Concept 49
Risk Level 50
Recommendation 50
Remediation Plan 50
MANUAL TESTING 51
INTRODUCTION 52
TESTING 53
REWARD MECHANISM 53
WITHDRAW FUNDS MECHANISM 56
UNDELEGATION MECHANISM 69
AUTOMATED TESTING 64
STATIC ANALYSIS REPORT 65
Description)

Slither results 65

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 10/26/2022 Kaan Caglan
0.2 Draft Updates 10/27/2022 Kubilay Onur Gungor
0.3 Draft Updates 10/30/2022 Kaan Caglan
0.4 Draft Updates 11/01/2022 Francisco Gonzalez
0.5 Draft Review 11/03/2022 Gabi Urrutia
1.0 Remediation Plan 11/04/2022 Francisco Gonzalez
1.1 Remediation Plan 11/05/2022 Francisco Gonzélez
Updates
1.2 Remediation Plan Review | 11/05/2022 Gabi Urrutia

CONTACTS

CONTACT

COMPANY

Rob Behnke Halborn

EMAIL

Rob.Behnke@halborn.com

Steven Walbroehl Halborn

Steven.Walbroehl@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Kubil
ubilay Onur Halborn Kubilay.Gungor@halborn.com
Gungor
Kaan Caglan Halborn Kaan.Caglan@halborn.com
F .
rancisco Halborn Francisco.Villarejo@halborn.com

Gonzalez

mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Kaan.Caglan@halborn.com
mailto:Francisco.Villarejo@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Stader Labs engaged Halborn to conduct a security audit on their smart
contracts beginning on October 21st, 2022 and ending on November 11th,
2022. The security assessment was scoped to the smart contracts provided

in the GitHub repositories stader-labs/hedera-stader-protocol-vi

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a
full-time security engineer to audit the security of the smart contracts.
The security engineer is a blockchain and smart-contract security expert
with advanced penetration testing, smart-contract hacking, and deep
knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Ensure that smart contract functions operate as intended.

®* Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks were mostly addressed
by the Stader Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard
to the scope of this audit. While manual testing is recommended to
uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify
items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

https://github.com/stader-labs/hedera-stader-protocol-v1/tree/eef82c8d5252f56d3357dd1ba4c1fc788e7faabd

EXECUTIVE OVERVIEW

® Research into architecture and purpose.

Smart contract manual code review and walkthrough.

Graphing out functionality and contract logic/connectivity/functions.

(solgraph)

® Manual assessment of use and safety for the critical Solidity
variables and functions in scope to identify any arithmetic related
vulnerability classes.

® Manual testing by custom scripts.

®* Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

Static Analysis of security for scoped contract, and imported

functions. (Slither)

®* Testnet deployment. (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the
risk assessment methodology by measuring the LIKELIHOOD of a security
incident and the IMPACT should an incident occur. This framework
works for communicating the characteristics and impacts of technology
vulnerabilities. The quantitative model ensures repeatable and accurate
measurement while enabling users to see the underlying vulnerability
characteristics that were used to generate the Risk scores. For every
vulnerability, a risk level will be calculated on a scale of 5 to 1 with
5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

Almost certain an incident will occur.

High probability of an incident occurring.
Potential of a security incident in the long term.

Low probability of an incident occurring.

- N wWw b~ O
|

Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.

EXECUTIVE OVERVIEW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW

10 - CRITICAL

9_

7
5 -
3

- h O

HIGH

MEDIUM

LOW

VERY LOW AND INFORMATIONAL

11

EXECUTIVE OVERVIEW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contract:

Undelegation.sol
Timelock.sol
® Staking.sol
* Rewards.sol
Ownable.sol

NodeProxy.sol

Audit Commit ID :
- eef82c8d5252f56d3357dd1badc1fc788e7faabd

Fixed Commit ID :
- b04fc3be788a6d698071ceb77f6fe844e0dedde?

Fixed Updated Commit ID:
- ¢c88a979fabb1f1338683d2687155558f7b006b4c

12

https://github.com/stader-labs/hedera-stader-protocol-v1/tree/eef82c8d5252f56d3357dd1ba4c1fc788e7faabd
https://github.com/stader-labs/hedera-stader-protocol-v1/tree/b04fc3be788a6d698071ceb77f6fe844e0ded0e7
https://github.com/stader-labs/hedera-stader-protocol-v1/tree/c88a979fabb1f1338683d2687155558f7b006b4c

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

(HAL-01)

(HAL-02)
(HAL-04)
(HAL-05)

(HAL-06)

LIKELIHOOD

13

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL@1 - TIMELOCK CAN BE BYPASSED SOLVED - 11/05/2022

HAL@2 - LACK OF TRANSFEROWNERSHIP

PATTERN SOLVED - 11/05/2022

HAL@3 - DIFFERENT PROXYNODE ARRAY

LENGTH REQUIREMENTS SRR SR e

HAL@4 - MISSING ZERO ADDRESS CHECKS SOLVED - 11/04/2022

PARTIALLY SOLVED -

HALO5 - LACK OF PARAMETER LIMITS 11/04/2022

HALO6 - MISSING REENTRANCY GUARD SOLVED - 11/04/2022

HAL@7 - NODEPROXY ARRAY CANNOT BE

MODIFIED ACKNOWLEDGED

HAL@O8 - FLOATING PRAGMA SOLVED - 11/04/2022

HAL@O9 - CACHE ARRAY LENGTH IN FOR
LOOPS CAN SAVE GAS

SOLVED - 11/04/2022

HAL1@ - USE CUSTOM ERRORS INSTEAD PARTIALLY SOLVED -
OF REVERT STRINGS 11/05/2022
HAL11 - REVERT STRING SIZE
OPTIMIZATION ACKNOWLEDGED
HALT12 - UNUSED EVENTS SOLVED - 11/04/2022
HAL13 - UNNECESSARY CHECK ACKNOWLEDGED

HAL14 - NO NEED TO INITIALIZE

VARIABLES WITH DEFAULT VALUES ACKNOWLEDGED

HAL15 - USING POSTFIX OPERATORS IN

LOOPS ACKNOWLEDGED

HAL16 - DIVISION BY ZERO SOLVED - 11/04/2022

HAL17 - SPLITTING REQUIRE()
STATEMENTS THAT USES AND OPERATOR SOLVED - 11/04/2022
SAVES GAS

EXECUTIVE OVERVIEW

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

3.1 (HAL-01) TIMELOCK CAN BE
BYPASSED - MEDIUM

Description:

Timelock contract is used to queue the transfer of HBAR from the previous
Staking contract to the new one. It introduces a lockedPeriod parameter,
defining the minimum time between a withdrawal is requested and when it
can be completed.

However, it has been detected that the address defined in timelockOwner
can either queue funds that could be transferred once lockedPeriod has
passed by and also can call setlLockedPeriod(), which defines the value
of lockedPeriod.

Since the same user who calls queuePartialFunds() or queueAllFunds() can
set lockedPeriod by calling setlLockedPeriod(), Timelock functionalities
can be trivially bypassed by an ill-intentioned user with enough
privileges, defeating the whole purpose of the contract.

Code Location:

61 function queuePartialFunds(address payable to, uint256 amount)
62 external

63 checkZeroAddress (to)

64 checkOwner

) returns (uint256)

66 {

67 if (amount > address(this).balance) revert("Amount exceeds
L, balance");

68 uint256 index = withdrawQueue.length;

69 Withdraw memory withdrawData = Withdraw({

70 timestamp: block.timestamp,

71 lockedAmount: amount,

72 to: to

73 DR

74 withdrawQueue.push(withdrawData);

16

FINDINGS & TECH DETAILS

75 emit Queued(index, amount);

76 return index;

77 }

78

79 /// @notice queue the transaction for withdrawal of the entire
L, contract balance

80 /// @param to address of the account to transfer the tokens to
81 function queueAllFunds (address payable to)

82 external

83 checkZeroAddress (to)

s checkower
85 returns (uint256)

86 {

87 uint256 index = withdrawQueue.length;

88 Withdraw memory userTransaction = Withdraw({

89 timestamp: block.timestamp,

90 lockedAmount: address(this).balance,

91 to: to

92 1

93 withdrawQueue.push(userTransaction);

94 emit Queued(index, address(this).balance);

95 return index;

96 }

144 /// @notice Set the locking period for the transfer of tokens
145 /// @param _lockedPeriod time in secs for withholding transfer
L, transaction

146
Ls

147 lockedPeriod = _lockedPeriod;
148 }
Risk Level:

Likelihood - 1
Impact - 5

FINDINGS & TECH DETAILS

Proof of Concept:

For this Proof of Concept, the user with Owner privileges in Timelock
contract will extract immediately the whole balance of Staking contract.
To do so, setLockedPeriod() will be called to set a @ lock period, and then
queueAllFunds() and withdraw() will be called consecutively, extracting
the complete balance stored in the contract, defeating the purpose of a
Time Lock.

=>> bypassTimeLocker()

Balance of Staking contract --> 10000000000000000000

Balance of user3 --> 1000000000000000000000000

Current Locked period value --= 7200

Setting 0 Locked period...

Transaction sent:

Gas price: gwel Gas limit: Nonce:

Staking.setlLockedPeriod confirmed Block: Gas used: {)
Queuing transfer and immediatly calling withdraw...
contract_Staking.queueAllFunds{user3, {'from': owner}) --=
Transaction sent:

Gas price: gwel Gas limit: Nonce:
Staking.queueAllFunds confirmed Block: Gas used: ()

contract_Staking.withdraw{®, {'from': owner}) -->
Transaction sent:
Gas price: gweil Gas limit: Nonce:
Sstaking.withdraw confirmed Block: Gas used: ()

Balance of Staking contract --= 0

Balance of user3 --> 1000010000000000000000000

Recommendation:

Multiple measures are recommended to enforce the correct use of Timelock:

Separate the roles in charge of setting lockedPeriod and transferring
balances.

®* Protect setlLockedPeriod() function itself with a Time Lock.

Add a require statement containing the minimum acceptable value for
lockedPeriod.

18

FINDINGS & TECH DETAILS

If this finding poses no security risk at all, then deleting Timelock
contract is recommended for saving gas and using a regular transfer
function instead.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by blocking the owner
to set the lockedPeriod variable less than 2 days.

19

FINDINGS & TECH DETAILS

3.2 (HAL-02) LACK OF
TRANSFEROWNERSHIP PATTERN - LOW

Description:

The current ownership transfer process for Timelock contract involves the
current owner calling the setTimeLockOwner() function:

134 /// @notice Set new multisig owner for the transfer of Hbar to
L, new version
135 /// @param _timelockOwner the new owner of Hbar withdrawal to

L, new version

136 function setTimeLockOwner (address _timelockOwner)
137 external

138 checkZeroAddress(_timelockOwner)

139 checkOwner

140 {

141 timelockOwner = _timelockOwner;

142 3}

If the nominated EOA account is not a valid account, it is entirely
possible that the owner may accidentally transfer ownership to an
uncontrolled account, losing the access to all functions with the
checkOwner modifier.

Risk Level:
Likelihood - 2
Impact - 2
Recommendation:

It is recommended to implement a two-step process where the owner nominates
an account and the nominated account needs to call an acceptOwnership()
function for the transfer of the ownership to fully succeed. This ensures

20

FINDINGS & TECH DETAILS

the nominated EOA account is a valid and active account.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by
two-step process.

implementing a

21

FINDINGS & TECH DETAILS

3.3 (HAL-03) DIFFERENT PROXYNODE
ARRAY LENGTH REQUIREMENTS - LOW

Description:

It has been observed that two functions check the length of the input
array and compare it to the length of nodeProxyAddresses array in Staking
contract, but they do it differently.

collectRewards takes an input array which defines from which contracts
rewards will be collected, and a require statement enforces that the
length of the array is equal than nodeProxyAddresses length:

286 function collectRewards(uint256[] memory
L, pendingRewardNodeIndexes)
287 external
288 payable
289 whenNotPaused
290 onlyOperator
291 {
292 require(nodeStakingActive, "node staking not active”);
293 require (
294 pendingRewardNodeIndexes.length == nodeProxyAddresses.
L, length,
PAK) "Invalid pendingRewardNodeIndexes input”
296)
297 for (uint256 i; i < nodeProxyAddresses.length; i++) {
298 if (pendingRewardNodeIndexes[i] == 1) {
299 require(
300 address(this).balance >= 1,
301 "Insufficient balance to execute
L, collectRewards”
302);
303 moveBalanceForStaking (nodeProxyAddresses[i], 1);
304 }
305 }
306 }

22

FINDINGS & TECH DETAILS

On the other hand, stakeWithNodes takes as input a similar array in
which each index of the position corresponds with each index of the
nodeProxyAddresses array. However, this time, the require statement
only checks for that array to have the same or lower length than

nodeProxyAddresses:

239 function stakeWithNodes(uint256[] calldata amountToSend,
L, uint256 index)

240 external

241 whenNotPaused

242 onlyOperator

243 {

244 require(!nodeStakingActive, "node staking already active")
L

245 require(index < nodeProxyAddresses.length, "Invalid index"”
L);

246 require (

247 amountToSend.length <= nodeProxyAddresses.length,

248 "Invalid size of amountToSend"”

249);

250 nodeStakingActive = true;

251 balanceBefore = address(this).balance;

252 // iterating over amountToSend array to send hbar to

L, respective index of nodeProxyContract

253 // following checks are to incorporate changes in the
L, staking contract balance after computing amountToSend

254 for (uint256 i = @; i < amountToSend.length; i++) {

255 if (

256 amountToSend[i]l > @ &&

257 address(this).balance > 0 &&

258 address(this).balance >= amountToSend[i]

259) {

260 moveBalanceForStaking(nodeProxyAddresses[i],
L, amountToSend[i]);

261 } else if (

262 amountToSend[i] > @ &&

263 address(this).balance > 0 &&

264 amountToSend[i] > address(this).balance

265) {

266 moveBalanceForStaking(

267 nodeProxyAddresses[i],

268 address(this).balance

23

FINDINGS & TECH DETAILS

269);

270 }

271 }

272 if (address(this).balance > 0) {
273 moveBalanceForStaking(

274 nodeProxyAddresses[index],
275 address(this).balance

276)N

277 }

278 emit stakedWithNodes(balanceBefore);
279 }

280

Having two arrays in which each position corresponds with the same position
of nodeProxyAddresses array but with different length requirements might
be confusing and error-prone, since the absence of a single position in
amountToSend could mean that every amount defined in the array is staked
into the wrong node.

Risk Level:

Likelihood - 1
Impact - 3

Recommendation:

It is recommended to unify the criteria of the require statements on
both functions, enforcing that amountToSend array has the same length of
nodeProxyAddresses to prevent confusions or any input error.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by requiring amountToSend
to have the same length as nodeProxyAddresses.

24

FINDINGS & TECH DETAILS

3.4 (HAL-04) MISSING ZERO ADDRESS
CHECKS - LOW

Description:

The constructor of the Rewards.sol contract is missing address validation.

Every address should be validated and checked that it is different from

zero. Control of that constructor is wrong because of the or statement

between them.

Because of that issue, either the _stakerAddress variable

or _daoAddress might be a @ address, and it can cause an unintended loss

in the distributeStakingRewards function. This is also considered a best

practice.

Code Location:

59 constructor (address payable _stakerAddress, address payable
L, _daoAddress) {
60 require(
61 _stakerAddress != address (@) || _daoAddress != address
L (0,
62 "Address cannot be a zero”
63)
64 stakerAddress = _stakerAddress;
65 daoAddress = _daoAddress;
66 genesisTimestamp = block.timestamp;
67 lastRedeemedTimestamp = genesisTimestamp;
68 // _pause();
69 }
Risk Level:

Likelihood - 2

Impact - 2

25

FINDINGS & TECH DETAILS

Recommendation:

It is recommended to validate that every address input is different from

ZEero.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by enforcing separate
zero address checks on each of the input addresses.

26

FINDINGS & TECH DETAILS

3.5 (HAL-05) LACK OF PARAMETER
LIMITS - LOW

Description:

It has been detected that some parameter modifying functions do not have
logical limits. This may cause the contract to function with parameter
values that, although allowed, make no sense in the context of the
application, which might cause a variety of problems or even rendering
the contract unusable.

There are two functions in Undelegation.sol and Timelock.sol contracts
that should have a minimum value check in place. These functions determine
the minimum time needed for being able to unstake HBAR from Staking
contract and for transferring funds from the old staking contract to the
new one, respectively.

Having no minimum value check means that HBAR could be immediately unstaked
or Timelock could be bypassed.

Similarly, it is recommended to define some boundaries on Staking.sol's
minDeposit and maxDeposit, since setting a minDeposit value too high or
a maxDeposit value too low (or zero) would prevent anyone from being able
to stake HBAR.

Code Location:

Listing 7: "Timelock.sol

function setlLockedPeriod(uint256 _lockedPeriod) external
L, checkOwner {
lockedPeriod = _lockedPeriod;

27

FINDINGS & TECH DETAILS

97 function setUnbondingTime (uint256 _unbondingTime) external
L, onlyOwner {

98 unbondingTime = _unbondingTime;

99 emit NewUnbondingTime (unbondingTime);

100 }

93 /// @notice Set minimum deposit amount (onlyOwner)

394 /// @param _newMinDeposit the minimum deposit amount in
L, multiples of 10*x*8

395 function updateMinDeposit(uint256 _newMinDeposit) external
L, onlyOwner {

396 minDeposit = _newMinDeposit;

397 }

398

399 /// @notice Set maximum deposit amount (onlyOwner)

400 /// @param _newMaxDeposit the maximum deposit amount in
L, multiples of 10%x*8

401 function updateMaxDeposit(uint256 _newMaxDeposit) external
L, onlyOwner {

402 maxDeposit = _newMaxDeposit;

403 3

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

It is recommended to enforce logical value limits for critical parameters
and check for additional occurrences of this same vulnerability.

28

FINDINGS & TECH DETAILS

Remediation Plan:

PARTIALLY SOLVED: The Stader Labs team partially solved this finding by
adding some logical checks on the Staking.sol contract, enforcing that
minDeposit is lower than maxDeposit, and maxDeposit is greater than

minDeposit.

29

FINDINGS & TECH DETAILS

3.6 (HAL-06) MISSING REENTRANCY
GUARD - LOW

Description:

To protect against cross-function re-entrancy attacks, it may be necessary
to use a mutex. By using this lock, an attacker can no longer exploit
the withdrawal function with a recursive call. OpenZeppelin has its own
mutex implementation called ReentrancyGuard which provides a modifier to
any function called nonReentrant that guards the function with a mutex
against re-entrancy attacks.

Code Location:

100 function withdraw(uint256 index) external returns (uint256) {
101 if (address(this).balance == @) revert(”"No funds to
L, withdraw");
102 if (index >= withdrawQueue.length) revert(”"Invalid index")
L
103 Withdraw storage withdrawData = withdrawQueue[index];
iz if (withdrawData.timestamp + lockedPeriod >= block.
L, timestamp)
105 revert(”"Unlock period not expired”);
106 if (withdrawData.lockedAmount == @) revert("Amount not
L, available");
107 address payable to = withdrawData.to;
108 uint256 amount = withdrawData.lockedAmount;
109 delete withdrawQueue[index];
110 // payable(to).transfer (amount);
111 Address.sendValue (payable(to), amount);
112 emit Transferred(index, amount, to);
113 return index;
114 }

30

FINDINGS & TECH DETAILS

Risk Level:

Likelihood - 2
Impact - 2

Recommendation:

The functions on the code location section have missing nonReentrant
modifiers. It is recommended to add the OpenZeppelin ReentrancyGuard

library to the project and use the nonReentrant modifier to avoid
introducing future re-entrancy vulnerabilities.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by adding the
nonReentrant modifier to the withdraw() function on the Timelock.sol
contract.

31

FINDINGS & TECH DETAILS

3.7 (HAL-07) NODEPROXY ARRAY CANNOT
BE MODIFIED - INFORMATIONAL

Description:

For each node in Hedera network, a NodeProxy contract will be deployed.
Each one of these contracts is assigned to one node, and staking on one
of the contracts will effectively mean the same as staking on the node
itself.

The addresses of these contracts are stored in nodeProxyAddresses array,
set in Staking contract’s constructor function.

However, there is no way to modify the addresses contained in the array, so
any eventuality related with Hedera nodes might potentially render Staking
contract partially or even completely unusable. These eventualities might
be related to node additions, node ID changes, etc.

Code Location:

1z constructor(

105 address _hbarxAddress,

106 address _multisigAdminAddress,

107 address payable _undelegationContractAddress,

108 uint256 _totalSupply,

109 address _operator,

110 address[] memory _nodeProxyAddresses

111)

112 Timelock(_multisigAdminAddress)

113 checkZeroAddress (_hbarxAddress)

114 checkZeroAddress(_undelegationContractAddress)

115 checkZeroAddress (_operator)

116 {

117 hbarxAddress = _hbarxAddress;

118 undelegationContractAddress = _undelegationContractAddress
L

119 totalSupply = _totalSupply;

32

FINDINGS & TECH DETAILS

120
121
122
123
124

125
126

Risk Level:

D)5

operator = _operator;
for (uint256 i = @; i < _nodeProxyAddresses.length; i++) {
if (_nodeProxyAddresses[i] == address(9))

revert("”zero address for nodeProxy");
nodeProxyAddresses.push(payable(_nodeProxyAddresses[i

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to implement a protected function allowing Stader

Labs team to modify nodeProxyAddresses array, adding flexibility in the

eventuality of any node change on Hedera network.

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

33

FINDINGS & TECH DETAILS

3.8 (HAL-08) FLOATING PRAGMA -
INFORMATIONAL

Description:

Hedera Stader Protocol contracts use floating pragma. Contracts should
be deployed with the same compiler version and flags they have tested
thoroughly. Locking the pragma helps to ensure that contracts do
not accidentally get deployed using, for example, either an outdated
compiler version that might introduce bugs that affect the contract
system negatively or a pragma version that is too new and has not been

extensively tested.

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

Consider locking the pragma version with known bugs for the compiler
version. When possible, do not use floating pragma in the final live
deployment. Specifying a fixed compiler version ensures that the bytecode
produced does not vary between builds. This is especially important if
you rely on bytecode-level verification of the code.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by fixing the pragma

version for each contract in scope.

34

FINDINGS & TECH DETAILS

3.9 (HAL-09) CACHE ARRAY LENGTH IN
FOR LOOPS CAN SAVE GAS -
INFORMATIONAL

Description:

Reading array length at each iteration of the loop takes 6 gas (3 for
mload and 3 to place memory_offset) in the stack. Caching the array
length in the stack saves around 3 gas per iteration.

Code Location:

286 function collectRewards(uint256[] memory
L, pendingRewardNodeIndexes)
287 external
288 payable
289 whenNotPaused
290 onlyOperator
291 {
292 require(nodeStakingActive, "node staking not active”);
293 require(
294 pendingRewardNodeIndexes.length == nodeProxyAddresses.
L, length,
295 "Invalid pendingRewardNodeIndexes input”
296);
297 for (uint256 i; i < nodeProxyAddresses.length; i++) {
312 function withdrawFromNodes () external whenNotPaused
L, onlyOperator {
313 require(nodeStakingActive, "node staking not active”);
314 for (uint256 i; i < nodeProxyAddresses.length; i++) {

35

FINDINGS & TECH DETAILS

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

Consider the cache array length.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by caching the array
length when needed.

36

FINDINGS & TECH DETAILS

3.10 (HAL-10) USE CUSTOM ERRORS
INSTEAD OF REVERT STRINGS -
INFORMATIONAL

Description:

Starting from Solidity v@.8.4, there is a convenient and gas-efficient
way to explain to users why an operation failed through the use of
custom errors. If the revert string uses strings to provide additional
information about failures (e.g. require(!isStakePaused, 'Staking is
paused');), but they are rather expensive, especially when it comes
to deploying cost, and it is difficult to use dynamic information in
them.

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

It is recommended to implement custom errors instead of revert strings.

Remediation Plan:

PARTIALLY SOLVED: The Stader Labs team partially solved this finding by

changing revert strings to custom errors in a few files.

37

FINDINGS & TECH DETAILS

3.11 (HAL-11) REVERT STRING SIZE
OPTIMIZATION - INFORMATIONAL

Description:

Shortening the revert strings to fit within 32 bytes will decrease
deployment time gas and decrease runtime gas when the revert condition

is met.

Revert strings that are longer than 32 bytes require at least one
additional mstore, along with additional overhead to calculate memory
offset, etc. For example:

Code Location:

82 require (
83 address(this).balance > 0,
84 "Contract balance is should be greater than 0"
85);
Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

Shorten the revert strings to fit within 32 bytes. That will affect gas
optimization.

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

38

FINDINGS & TECH DETAILS

3.12 (HAL-12) UNUSED EVENTS -
INFORMATIONAL

Description:

The following events are declared, but they are not emitted by any

function:

Code Location:

NodeProxy.sol

- Line 17:
event Received(address indexed from, uint256 amount);
- Line 20:
event Fallback(address indexed from, uint256 amount);
- Line 29:

event CollectedRewards();

Staking.sol
- Line 70:

event Undelegated(address indexed to, uint256 amount);

Undelegation.sol

- Line 27:

event Received(address from, uint256 amount);
- Line 29:

event Fallback(address from, uint256 amount);

Risk Level:

Likelihood - 1
Impact - 1

39

FINDINGS & TECH DETAILS

Recommendation:

Check whether these events should be used and if not remove them.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by removing unnecessary

events.

40

FINDINGS & TECH DETAILS

3.13 (HAL-13) UNNECESSARY CHECK -
INFORMATIONAL

Description:

The distributeStakingRewards function under Rewards.sol does check if
the daoFeesPercentage is less than 100 and then reverts. However, that
condition will never be reachable as the setDaoFeesPercentage function
guarantees that daoFeesPercentage won’t be able to higher or equal to
100.

Code Location:

81 function distributeStakingRewards() external whenNotPaused
L, nonReentrant {

82 require (

83 address(this).balance > 0,

84 "Contract balance is should be greater than 0"

85);

146 function setDaoFeesPercentage(uint256 _daoFeesPercentage)
147 external

148 onlyOwner

149 {

150 require(

152 "Dao fees percentage should be less than 100"

153);

154 daoFeesPercentage = _daoFeesPercentage;

155 }

41

FINDINGS & TECH DETAILS

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

It is recommended to remove unnecessary checks to reduce gas costs

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

42

FINDINGS & TECH DETAILS

3.14 (HAL-14) NO NEED TO INITIALIZE
VARIABLES WITH DEFAULT VALUES -

INFORMATIONAL

Description:

uint256 variables are already initialized to @ by default. uint256 public

epoch = 0 would reassign the @ to epoch which wastes gas.

The same occurs with bool and address variables.

initialized to false/address(0).

Code Location:

Rewards.sol
- Line 21:
uint256 public epoch = 0;

Staking.sol
- Line 30:
bool public isStakePaused = false;

- Line 31:

bool public isUnstakePaused = false;

- Line 32:

bool public nodeStakingActive = false;
- Line 36:

uint256 public minDeposit = 0;

- Line 39:

uint256 public totalSupply = 0;

- Line 121:
for (uint256 i
- Line 254:
for (uint256 i

NodeProxy.sol
- Line 14:

0; i < amountToSend.length; i++){

They are already

0; i < _nodeProxyAddresses.length; i++){

43

FINDINGS & TECH DETAILS

address payable public stakerAddress = payable(address(0));

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not initialize uint variables to @. bool variables
to false and address variables to address(@) to save some gas. For
example, use instead:

uint256 public totalSupply;

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

44

FINDINGS & TECH DETAILS

3.15 (HAL-15) USING POSTFIX
OPERATORS IN LOOPS - INFORMATIONAL

Description:

In the loops below, postfix operators (e.g. i++) were used to increment
or decrement the value of variables. 1In loops, using prefix operators
(e.g., ++i) costs less gas per iteration than postfix operators.

Code Location:

Staking.sol
- Line 121:
for (uint256
- Line 254:
for (uint256 i
- Line 297:
for (uint256 i; i < nodeProxyAddresses.length; i++){
- Line 314:

for (uint256 i; i < nodeProxyAddresses.length; i++){

.
1l

0; i < _nodeProxyAddresses.length; i++){

0; i < amountToSend.length; i++){

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of an
uint variable inside a loop. This does not only apply to the iterator
variable. It also applies to the increments/decrements done inside the
loop code block.

45

FINDINGS & TECH DETAILS

Remediation Plan:

ACKNOWLEDGED: The Stader Labs team acknowledged this finding.

46

FINDINGS & TECH DETAILS

3.16 (HAL-16) DIVISION BY ZERO -
INFORMATIONAL

Description:

Calling the getExchangeRate function with totalSupply as @ and
nodeStakingActive as true, will cause the function to throw a division

by zero error.

Code Location:

365 function getExchangeRate() external view returns (uint256) {

366 ///@dev 1HBar = 100_000_000 tinybar

367 if (nodeStakingActive) {

368 return (balanceBefore * decimals) / totalSupply;

369 }

370 uint256 exchangeRate = 1 * decimals;

371 if (totalSupply == || address(this).balance == 0) {

372 return exchangeRate;

373 } else {

374 exchangeRate = ((address(this).balance) * decimals) /
L, totalSupply;

375 }

376 return exchangeRate;

377 }

Risk Level:

Likelihood - 1
Impact - 1
Recommendation:

Make sure to validate all operands used during a math operation and
inform the user of unappropriated state by reverting the transaction with

47

FINDINGS & TECH DETAILS

a custom message.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by validating all
operands before performing math operations.

48

FINDINGS & TECH DETAILS

3.17 (HAL-17) SPLITTING REQUIRE()
STATEMENTS THAT USES AND OPERATOR
SAVES GAS - INFORMATIONAL

Description:

Instead of using the && operator in a single require statement to check
multiple conditions, using multiple require statements with one condition
per require statement will save 8 GAS per &&

The gas difference would only be realized if the revert condition is
realized (met).

Code Location:

138 require(

139 hbarReceived > minDeposit && hbarReceived <=
L, maxDeposit,

140 "Deposit amount must be within valid range”

141);

62 require(

63 undelegateData.amount != @ && undelegateData.timestamp
L !=0

64 "Undelegation not found”

65)

Proof of Concept:

The following tests were carried out in remix with both optimization
turned on and off

FINDINGS & TECH DETAILS

1 require (a > 1 & & a < 5, "Initialized");

2 return a + 2;

Execution cost
21617 with optimization and using &&
21976 without optimization and using &&

After splitting the require statement

1 require (a > 1 ,"Initialized");
2 require (a < 5 , "Initialized");
3 return a + 2;

Execution cost
21609 with optimization and split require
21968 without optimization and using split require

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

For best security practices, consider as much as possible, declaring
events at the end of the function. Events can be used to detect the end
of the operation.

Remediation Plan:

SOLVED: The Stader Labs team solved this finding by splitting require
statements.

50

MANUAL TESTING

MANUAL TESTING

4.1 INTRODUCTION

Halborn performed different manual tests in all the different Facets of
the Hedera protocol, trying to find any logic flaws and vulnerabilities.

During the manual tests, the following areas were reviewed carefully :
1. Reward mechanism.

2. Withdraw funds mechanism.
3. Undelegation mechanism.

52

MANUAL TESTING

4.2 TESTING

REWARD MECHANISM:

In the Rewards.sol contract there is a function named distributeStakingRewards
and this function is responsible to distribute staking rewards among
those with staker address and DAO address.

81 function distributeStakingRewards () external whenNotPaused

L, nonReentrant {

82 require (

83 address(this).balance > 0,

84 "Contract balance is should be greater than 0"
85) g

86 require (

87 daoFeesPercentage < 100,

88 "Dao fees percentage should be less than 100"
89)5

90 uint256 currentTimestamp = block.timestamp;

91 uint256 epochDelta = (currentTimestamp -

L, lastRedeemedTimestamp);

92 lastRedeemedTimestamp = currentTimestamp;

93 epoch++;

94 uint256 epochRewards = (epochDelta * emissionRate);
95

96 uint256 totalRewards = address(this).balance;

97 if (epochRewards > totalRewards) epochRewards =

L, totalRewards; // this is important

98
99 uint256 daoFees = (epochRewards * daoFeesPercentage) /
L, 100;
100
101 // payable(stakerAddress).transfer (epochRewards - daoFees)
L
102 Address.sendValue (payable(stakerAddress), epochRewards -
L, daoFees);
103 emit DistributedRewards(
1z stakerAddress,
105 epochRewards - daoFees,
106 currentTimestamp
107)

53

MANUAL TESTING

108 // payable(daoAddress).transfer (daoFees);
109 Address.sendValue(payable(daoAddress), daoFees);

110 emit DaoTransfer (daoAddress, daoFees, currentTimestamp);
111 }

This function does not have any kind of msg.sender control, So anyone
would be able to call this function. This function distributes rewards
every 24 hours. A malicious actor can call this function before 24 hours,
but a malicious actor can call this anytime. However, he will not be
able to manipulate this function somehow because of the correctness of
totalRewards and daoFees calculations. Even malicious actor calls this
in 12 hours, rewards will be the same because it always calculates it
with lastRedemeedTiestamp variable.

=>> lastRedeemedTimestamp - rewardsContract.lastRedeemedTimestamp()

=>> stakingContract balance()

0

=== rewardsContract balance()

lepePepepeeeeeeeeee

=>> tx1 - rewardsContract distributeStakingRewards({'from': userl})

Transaction sent: 8x5cfd4ea76175d8ade62494elafcf8d4fc68341ban96b587937e5T0b4ad13b4a2bd6
Gas price: 0.0 gwei Gas limit: 120080086 Nonce: ©
Rewards.distributeStakingRewards confirmed Block: 15 Gas used: 77636 (0.65%)

=>> stakingContract balance()

83516507676

>>> epochDelta - tx1. timestamp - lastRedeemedTimestamp

=>> secondlLastRedeemedTimestamp - rewardsContract. lastRedeemedTimestamp()

=== tx2 rewardsContract distributeStakingRewards({'from': userl}}

Transaction sent: 8xc49azee762d3ed47daf535b0df8c3728219b6b375032112e82d1971b9cfBctaa
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1
Rewards.distributeStakingRewards confirmed Block: 16 Gas used: 62636 (0.52%)

=>> stakingContract balance()
272820591742

e Annehfal FaChon] ADA +wT G most e 1 art+DadanamadTimac+-amn
=== gpochDeltaShouldBe = tx2 timestamp - lastRedeemedTimestamp
=>> secondEpochDelta - tx2 timestamp - secondLastRedeemedTimestamp
=== gpochDeltaShouldBe secondEpochDelta + epochDelta
True
=>> gpochRewards - epochDeltaShouldBe = rewardsContract emissionRate()
=>> initialRewardsBalance = 100008000008000008808
=== 1T epochRewards - initialRewardsBalance:
epochRewards = initialRewardsBalance

=>> faoFees - epochRewards = rewardsContract daoFeesPercentage() 180
=>> stakerShouldGet - epochRewards - daoFees

Listing 23

1 >>> stakerShouldGet
2 272820591741.6
3 >>> stakingContract.balance ()

54

MANUAL TESTING

4 272820591742

So even attacker calls this function 2 times, in the end staker gets the
same balance because the math is correct. The only difference here is
the precision loss in division operation in solidity. The only way to
exploit this function is to make currentTimestamp variable to be equal
to lastRedeemedTimestamp and if an attacker can do that. epochDelta will
be @ and eventually staker or DAO won’t be able to get any rewards. But
it’s not likely possible because the attacker can’t send thousands of
transactions to make it pass in the same block time. The average block
time mining in Ethereum is 12 seconds, so the attacker won’t be able to
do this.

55

MANUAL TESTING

WITHDRAW FUNDS MECHANISM:

In the Timelock.sol contract there is a function named withdraw, with
using this function users can withdraw their funds. And there are two
other functions named queuePartialFunds and queueAllFunds which allow the
owner to queue funds.

61 function queuePartialFunds (address payable to, uint256 amount)
62 external

63 checkZeroAddress (to)

64 checkOwner

65 returns (uint256)

66 {

67 if (amount > address(this).balance) revert(”Amount exceeds
L, balance”);

68 uint256 index = withdrawQueue.length;

69 Withdraw memory withdrawData = Withdraw({

70 timestamp: block.timestamp,

71 lockedAmount: amount,

72 to: to

73 DR

74 withdrawQueue.push(withdrawData);

7% emit Queued(index, amount);

76 return index;

77 3}

81 function queueAllFunds(address payable to)
82 external

83 checkZeroAddress (to)

84 checkOwner

85 returns (uint256)

86 {

87 uint256 index = withdrawQueue.length;

88 Withdraw memory userTransaction = Withdraw({
89 timestamp: block.timestamp,

90 lockedAmount: address(this).balance,
91 to: to

92 DN

93 withdrawQueue.push(userTransaction);

56

MANUAL TESTING

94
95
96

emit Queued(index, address(this).balance);
return index;

100
101

L
102

103
104

105
)

107
108
109
110
111
112
113
114

function withdraw(uint256 index) external returns (uint256) {

withdraw"”);

timestamp)

available");

if (address(this).balance == @) revert(”"No funds to

if (index >= withdrawQueue.length) revert("Invalid index")

Withdraw storage withdrawData = withdrawQueue[index];
if (withdrawData.timestamp + lockedPeriod >= block.

revert(”"Unlock period not expired");
if (withdrawData.lockedAmount == @) revert("Amount not

address payable to = withdrawData.to;
uint256 amount = withdrawData.lockedAmount;
delete withdrawQueuel[index];

// payable(to).transfer (amount);
Address.sendValue (payable(to), amount);
emit Transferred(index, amount, to);

return index;

At the end of the withdraw function, contract is sending withdrawData.

lockedAmount amount to withdrawData.to user. Address.sendValue is sending

the given Ethereum amount to the user with .call function.

60
N
61
L
62
63
64
L
65

function sendValue (address payable recipient, uint256 amount)
internal {

insufficient balance”);

may have reverted");

require(address(this).balance >= amount, "Address:

(bool success,) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient

57

MANUAL TESTING

So in theory it is possible to create another contract to make a
re-entrancy attack because withdraw function does not have any re-entrancy
guard mechanism. However, withdraw function follows the Check-Effects
-Interaction pattern correctly because it is deleting the index before
sending the Ethereum to the user. So, it is not likely possible to do
re-entracy attack in this function. There is no msg.sender control in
this withdraw function, so that means any user can call this withdraw
function with any parameter and withdraw funds for someone else’s Ethereum
to their address, but it is not a vulnerability because at the end the
correct user is funded.

==> stakingContract queuePartialFunds(userl, web3 toWei('e.1', 'ether'), {'from': deployer})
Transaction sent: 0x22a314a69c0fdcl26343f922593h70e85h9d44a09372908d23d4b679%ec56a49

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 16

Staking.queuePartialFunds confirmed Block: 19 Gas used: 106354 (0.89%)

Transaction '8x22a314a69c0Tdcl263437T922593b70e85b9d44a09372908d23d4b6799ec56a49"
==> stakingContract queuePartialFunds(user2, web3 toWei('®.1', 'ether'), {'from': deployer})
Transaction sent: 8x08c752e8b86chfeacc7ab3bcof66773Ta695b7849efd375695a3e5dfch879b009

Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 17

Staking.queuePartialFunds confirmed Block: 20 Gas used: 91342 (0.76%)

Transaction '8x8c752e8b96cbBeacc7ab3bc8f66773Ta695b7849eTd375695a3e5dfch879b009"
>>> stakingContract withdrawQueue(8)
(1667128388, 10000000P00AE0O00E, "Ox33A4622B82D4chd4a53el70cE38B944ce27cffce3”)
==> stakingContract withdrawQueue(1)
(1667128391, 1P00E000POEEEEO00E, "OxOPE3046686E46Dc6F15918bE1AE2B121458534a5")
=>> stakingContract. lockedPeriod()
7200
>>> stakingContract. setlLockedPeriod(®, {'from': deployer})
Transaction sent: 0x9cfd78d1b30f7f617bb26el4c76638916def940d94eed6fond2ecetd2ddbdfe3
Gas price: 0.0 gwel Gas limit: 12000000 MNonce: 18
Staking.setlLockedPeriod confirmed Block: 21 Gas used: 13695 (8.11%)

Transaction '8x9cfd78d1b30T7T617bb26el4c76638916def940d94eed6TOdd2ecebfd2ddbdfa3”
=>> stakingContract. lockedPeriod()
[0}

58

MANUAL TESTING

>>> userl.balance()

1000000000000000000000

=>>> User2. balance()

1000000000000000000000

=== stakingContract withdraw(®, {'from®': userl})

Transaction sent: 8x654fh22e95687c073d770T273ee86caf486c940hd5al7e8749d4cc7d8531bhbb5
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 2
Staking.withdraw confirmed Block: 22 Gas used: 26791 (0.22%)

<Transaction '0x654Tb22e95687c073d770T273ee86caf486c940bd5al7e8749d4cc7d8531bbb5" ~
=>> userl balance()
100010000000000RE00000
=>> stakingContract withdraw(®, {'from': userl})
Transaction sent: 0xda7ad0553cad49830Td52925616853c594ac2d46d11181ab0ad28a8l3dchcobe
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 3
Staking.withdraw confirmed (Amount not available) Block: 23 Gas used: 25905 (0.22%)

<Transaction 'exda7ade553cad49830fd52925616853c594ac2d46d11181a00ad28as813dchcobe’ >
==> stakingContract withdraw(1, {'from®': userl})
Transaction sent: 0x832afbh94cda6f680d2910e5a32ca5h665441095acheTeaf2574ff34d1bebet2
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 4
Staking.withdraw confirmed Block: 24 Gas used: 26797 (0.22%)

<Transaction '0x032afeb94cdabT680d2910e5a32ca5b665441095ache7ealf2574f f34d1b6bcf2" -
=>> yserl balance()

1000100000000000000000

>>> user2.balance()

1996%90999990999999999

.

59

MANUAL TESTING

UNDELEGATION MECHANISM:

In the Staking.sol contract after users unstake their HBARX to
withdraw their money, unStake function calls the undelegate function of
Undelegation.sol contract.

189 function unStake(uint256 amount) external whenNotPaused returns (
L, uint256) {

190 require(!nodeStakingActive, "node Staking is active");

191 require(!isUnstakePaused, "Unstaking is paused”");

192 uint256 hbarxToBurn = (amount);

193

194 uint256 hbarToTransfer = hbarxToBurn; // exchange rate = 1

195 if (totalSupply != @) {

196 hbarToTransfer =

197 (hbarxToBurn * ((address(this).balance))) /

198 (totalSupply);

199 }

200

201 ///@dev transfer hbarx to the provided address

202 int256 transferTokenResponse = HederaTokenService.
L, transferToken (

203 hbarxAddress,

204 msg.sender,

205 address(this),

206 hbarxToBurn.toInt256().toInt64 ()

207)

208

209 if (transferTokenResponse != HederaResponseCodes.SUCCESS)
L {

210 revert ("HBARX transfer failed"”);

211 }

212

213 ///@dev burn hbarx tokens

214 (int256 burnTokenResponse, uint64 newTotalSupply) =
L, HederaTokenService

215 .burnToken (hbarxAddress, hbarxToBurn.toUint64(), new
L, int64[1(9));

216 totalSupply = uint256(newTotalSupply);

217 if (burnTokenResponse != HederaResponseCodes.SUCCESS) {

218 revert ("HBARX burn failed");

219 }

MANUAL TESTING

220
221 ///@dev move tokens to undelegation contract

225 if (!success) {

226 revert("Transfer failed");

227 3}

228 emit UnStaked(msg.sender, hbarToTransfer, hbarxToBurn);
229 ///@dev return hbars for transaction

230 return hbarToTransfer;

231 }

The only way to call undelegate function is by calling the unStake
function because undelegate function is checking if msg.sender is
stakingContractAddress.

42 function undelegate(address to) external payable returns (

L, uint256) {

43 require(msg.value > 0, "Undelegate amount must be greater
L, than 0");

50 emit Undelegated(to, msg.value);
51 return msg.value;
52 }

And this function pushes given msg.value and to parameters to
undelegationsMap for each user. After that step, users can call
withdraw function to withdraw their money. withdraw function is
calling Address.sendValue like in Timelock contract. However, in this
case, there is a nonReentrant modifier to block the user to make

61

MANUAL TESTING

re-entrancy attacks. Even without nonReentrant guard also on the
function Check-Effects-Interaction pattern is used correctly.

- I
L

61 Undelegate storage undelegateData = undelegationsMap[msg.
L, sender][index];

62 require (

63 undelegateData.amount != @ && undelegateData.timestamp
L I= 0,

64 "Undelegation not found”

65)5

66 require(

67 undelegateData.timestamp + unbondingTime <= block.

L, timestamp,

68 "Release time not reached”

69) g

70

71 uint256 amount = undelegateData.amount;

2 delete undelegationsMeplmsg.senderlfindexd;
73 // payable(msg.sender).transfer (amount);

5 Address.sendvalve(payable(nss.sender), amount);
7% emit Withdrawn(msg.sender, amount);

76 }

So, it is not possible to make re-entrancy attacks or get more money
than you also deserve in this function.

62

MANUAL TESTING

=>> undelegationContract undelegate(user2, {'from': stakingContract, 'value': web3 towei('®.1', 'ether')})

Transaction sent: 0x6e47dd21c9bbdebe365cfléb6e54hfae50030ed3blodeldbald5s5e2837caf276
Gas price: 0.0 gwei Gas limit: 12000008 Nonce: 2
Undelegation.undelegate confirmed Block: 27 Gas used: 85184 (0.71%)

<Transaction 'Bx6ed47dd21c9bbdebe365cf16b6e54bfaec50030ed3blodeldbalds55e2837caf276' -

=>> undelegationContract setUnbondingTime(®, {'from': deployer})

Transaction sent: 8x6771742e98ba9%93eea7796b28fh57ef849a097e3f9678bc5b56celd23581c09cd
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 20
Undelegation.setUnbondingTime confirmed Block: 28 Gas used: 24210 (0.20%)

<Transaction '0x6771742e98ba93eea7796b28fb57ef849ap97e319678bc5b56celd23581c09¢c4 "~

=>> undelegationContract undelegationsMap(user2, ©)

(1667132869, 100000000O0000E0EE)

=>> undelegationContract unbondingTime()

(¢}

=== user2 balance()

10801060000000000000000

=== undelegationContract withdraw(®, {'from': user2})

Transaction sent: 8x7d7b6ad7bab9a7f7c72910dc7aa56f26e4ebd85102889c%abedd1lb2466c86a94
Gas price: 0.0 gwei Gas limit: 12000008 Nonce: ©
Undelegation.withdraw confirmed Block: 29 Gas used: 27053 (0.23%)

<Transaction '@x7d7b6a47bab%a7f7c72910dc7aa56T26e4ebd85102889c9abedd1b2466c86a94 ' ~
=== user2 balance()
1000200000000000000000
=>> undelegationContract withdraw(®, {'from': user2})
Transaction sent: @xbl48338fe8afc347cfelb590e51la78a75ecld468cole6fla6ofaffdeee7 f557F
Gas price: 0.0 gwei Gas limit: 12000000 Nonce: 1
Undelegation.withdraw confirmed (Undelegation not found) Block: 30 Gas used: 30066 (0.25%)

<Transaction '8xb148338f88afc347cfelb598e51a78a75ec1d468chle6Tlac0f8ffdeee7f557F =
=>> undelegationContract undelegationsMap(user2,)

(e, 8}

==]

63

AUTOMATED TESTING

AUTOMATED TESTING

5.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of
certain areas of the smart contracts in scope. Among the tools used was
Slither, a Solidity static analysis framework. After Halborn verified
the smart contracts in the repositories and was able to compile them
correctly into their ABIs and binary format, Slither was run against the
contracts. This tool can statically verify mathematical relationships
between Solidity variables to detect invalid or inconsistent usage of the
contracts’ APIs across the entire code-base.

Slither results:

NodeProxy. lockStakingContract (address) (contracts/NodeProxy.sol#78-85) should emit an event for: '
- stakingContractId = _stakingContractId (contracts/NodeProxy.sol#84) '
Timelock. setTlmeLcckwner(address) (contracts/Timelock.sol#126-132) should emit an event for:
ockowner = _timelockOwner (contracts/Timelock.sol#131)
Staking. updateoperaturAddress(address] (contracts/Staking. s01#347-349) should emit an event for:
- operator = operator (contracts/Staking.sol#348)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#nissing-events-access-control

Revards. setDauFeesper(entage(umtzsm (contracts/Rewards.sol#124-127) should emit an event for:
jaoFeesPercentage = _daoFeesPercentage (contracts/Rewards.sol#126)
Reference: I\ttps //github.com/crytic/slither /wiki/Detector-Docunentation#nissing-events-arithmetic

Staking.transferToNode(address,uint256) (contracts/Staking.sol#299-302) has external calls inside a loop: (success) = (_nodeProxy).call{value: amount}(abi.encodeWithSignature(receiveFunds())) (contr
acts/Staking.so1#300)

Staking.collectRevards() (contracts/Staking.sol#253-264) has external calls inside a loop: (success) = (nodeProxyAddresses[i]).call(abi.encodeWithSignature(collectRevards())) (contracts/Staking.sol#
257-258)

Staking.withdrawFronNodes () (contracts/Staking.sol#270-296) has external calls inside a loop: (transferFundSuccess) = (nodeProxyAddresses[i]).call(abi.encodeWithsignature (transferfund())) (contracts

/Staking. so1#274-276)
Reference: https://github.com/crytic/slither/wiki/Detector-Docunentation/#calls-inside-a-loop

Different versions of Solidity are used:
- version used: ['>=0.4.9<0.9.8', '>=0.5.0<0.9.0', '~0.8.0', '“0.8.1', '°0.8.9']
- 70.8.0 (node modules/@openzeppelin/contracts/security/Pausable.sol#4)
- "0.8.0 (node_modules/@openzeppelin/contracts/security/ReentrancyGuard.sol#4)
- "0.8.1 (node_modules/@openzeppelin/contracts/utils/Address.sol#4)
- *0.8.0 (node modules/@openzeppelin/contracts/utils/Context.sol#4)

~0.8.0 (node modules/@openzeppelin/contracts/utils/math/SafeCast.sol#4)

- >=0.4.9<0.9.0 (contracts/HederaResponseCodes.sol#2)

- >=0.5.0<0.9.0 (contracts/HederaTokenService.sol#2)

- ABIEncoderVz (contracts/HederaTokenservice.sol#3)

- >=0.4.9<0.9.0 (contracts/IHederaTokenService.sol#2)

- ABIEncoderV2 (contracts/IHederaTokenService.sol#3)

- "0.8.9 (contracts/NodeProxy.sol#1)
- “0.8.@ (contracts/Ownable.sol#4)
- *0.8.9 (contracts/Rewards.sol#2)
- "0.8.9 (contracts/Staking.sol#2)
- "0.8.9 (contracts/Timelock.sol#2)
- *8.8.9 (contracts/Undelegation.sol#2)
Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-pragma-directives-are-used

HederaTokenService.associateTokens (address,address[]) (contracts/HederaTokenService.sol#94-102) is never used and should be removed

HederaTokenService. cryptoTransfer(IHederaTokenService.TokenTransferList[]) (contracts/HederaTokenService.sol#14-22) is never used and should be removed
HederaTokenservice.dissociateToken(address,address) (contracts/HederaTokenService.sol#139-144) is never used and should be removed
HederaTokenService.dissociateTokens (address,address[]) (contracts/HederaTokenService.sol#129-137) is never used and should be removed
HederaTokenService. transferNFT(address, address, address, int64) (contracts/HederaTokenService.sol#225-241) is never used and should be removed
HederaTokenService. transferNFTs(address,address[],address[],int64[]) (contracts/HederaTokenService.sol#175-191) is never used and should be removed
HederaTokenservice. transferTokens(address,address[],int64[]) (contracts/HederaTokenService.sol#154-168) is never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version”8.8.8 (node_modules/@openzeppelin/contracts/security/Pausable.sol#4) allows old versions

Pragma version®®.8.0 (node modules/@openzeppelin/contracts/security/ReentrancyGuard.sol#4) allows old versions

Pragma version™0.8.1 (node modules/@openzeppelin/contracts/utils/Address.sol#4) allows old versions

Pragma version0.8.0 (node_modules/@openzeppelin/contracts/utils/Context.sol#4) allows old versions

Pragma version™@.8.0 (node_modules/@openzeppelin/contracts/utils/math/SafeCast.sol#4) allows old versions

Pragma version>=0.4.9<0.9.0 (contracts/HederaResponseCodes.sol#2) is too complex

Pragma version>=0.5.0<08.9.0 (contracts/HederaTokenService.sol#2) is too complex

Pragma version>=0.4,9<0.9.0 (contracts/IHederaTokenService.sol#2) is too complex

Pragma version”@.8.9 (contracts/NodeProxy.sol#l) necessitates a version too recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7

Pragma version®0.8.0 (contracts/Ownable.sol#4) allows old versions

Pragma version™0.8.9 (contracts/Rewards.sol#2) necessitates a version too recent to be trusted. Consider deploying with ©.6.12/0.7.6/0.8.7
8
8

Pragma version™0.8.9 (contracts/Staking.sol#2) necessitates a version too recent to be trusted. Consider deploying with ©.6.12/0.7.6/0.8.7
Pragma version”0.8.9 (contracts/Timelock.sol#2) necessitates a version too recent to be trusted. Consider deploying with 0.6.12/0.7.6/0.8.7
Pragma version®0.8.9 (contracts/Undelegation.sol#2) necessitates a version too recent to be trusted. Consider deploying with ©.6.12/0.7.6/08.8.7
solc-08.8.17 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-versions-of-solidity

65

AUTOMATED TESTING

Parameter Rewards.setEmissionRate(uint256). emissionRate (contracts/Rewards.sol#97) is not in mixedCase

Parameter Rewards.setStakerAddress(address)._ stakerAddress (contracts/Rewards.sol#104) is not in mixedCase

Parameter Rewards.setDacAddress(address). daoAddress (contracts/Rewards.sol#114) is not in mixedCase

Parameter Rewards.setDaoFeesPercentage(uint256). daoFeesPercentage (contracts/Rewards.sol#124) is not in mixedCase

Event StakingstakedwithNodes({uint256) (contracts/Staking.sol#61) is not in CapWords

Event StakingwithdrawnFromModes(uint256) (contracts/Staking.sol#63) is not in CapWords

Event StakingnodeStakingDaoFeeTransfer(address,uint256) (contracts/Staking.sol#65) is not in CapWords

Event StakingupdatedNodeStakingActiveFlag(bool) (contracts/Staking.sol#69) is not in CapWords

Parameter Staking.transferToNode(address,uint256). nodeProxy (contracts/Staking.sol#299) is not in mixedCase

Parameter Staking.updateMinDeposit(uint256). newMinDeposit (contracts/Staking.sol#335) is not in mixedCase

Parameter Staking.updateMaxDeposit(uint256). newMaxDeposit (contracts/Staking.sol#341) is not in mixedCase

Parameter Staking.updateOperatorAddress(address). operator (contracts/Staking.sol#347) is not in mixedCase

Parameter Staking.setRewardsContractAddress(Rewards). rewardsContractAddress (contracts/Staking.sol#353) is not in mixedCase
Parameter Staking.setUndelegationContractAddress(address). undelegationContractAddress (contracts/Staking.sol#363) is not in mixedCase
Parameter Timelock.setTimeLockOwner(address). timelockOwner (contracts/Timelock.sol#126) is not in mixedCase

Parameter Timelock.setlockedPeriod(uint256). lockedPeriod (contracts/Timelock.sol#136) is not in mixedCase

Parameter Undelegation.setStakingContractAddress(address). stakingContractAddress (contracts/Undelegation.sol#75) is not in mixedCase
Parameter Undelegation.setUnbondingTime(uint256). unbondingTime (contracts/Undelegation.sol#82) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

HederaResponseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
. TRANSACTION EXPIRED (contracts/HederaResponseCodes.sol#10) is never used in Staklng (contracts/Staking.sol#20-404)

HederaRespenseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
HederaResponseCodes.
.INSUFFICIENT GAS (contracts/HederaResponseCodes. sol#40) is never used in Staking (contracts/Staking.sol#20-404)

HederaResponseCodes

HederaRespenseCodes.
HederaResponseCodes.
HederaRespenseCodes.
. CONTRACT_EXECUTION_EXCEPTION (contracts/HederaResponseCodes.sol#44) is never used in Staking (contracts/Staking.sol#20-404)

HederaResponseCodes

OK (contracts/HederaResponseCodes.sol#6) is never used in Staking (contracts/staking.501#26-494)

INVALID TRANSACTION (contracts/HederaResponseCodes.sol#7) is never used in Stakmg (contracts/Staking.sol#20-404)
PAYER_ACCOUNT NOT FOUMD (contracts/HederaResponseCodes.sol#8) is never used in Staking (contracts/Staking.sol#20-464)
INVALID_NODE_ACCOUNT (contracts/HederaResponseCodes.sol#9) is never used in Staking (contracts/staking.sol#20-404)

INVALID TRANSACTION START (contracts/HederaResponseCodes.sol#11) is never used in Staking (contracts/Staking.sol#20-404)
INVALID TRANSACTIUN DURATION (contracts/HederaResponseCodes sol#12) is never used in Staking (contracts/Staking.sol#20-404)
INVALID SIGNATURE (contractS/HederaResponssCodes sol#13) is never used in Staking (contracts/Staking.sol#20-404)
MEMO_TO0_LONG (contracts/HederaResponseCodes.sol#14) is never used in Staking (contracts/Staking.sol#20-464)
INSUFFICIENT TX FEE (contracts/HederaResponseCodes.sol#15) is never used in Staklng (contracts/Staking.sol#20-404)
INSUFFICIENT PAYER BALANCE (contracts/HederaResponseCodes.sol#16) is never used in Staking (contracts/Staking.sol#20-404)
DUPLICATE ° TRANSACTION (cnntracts/HederaRespnnseCndes sol#17) is never used in Staking (contracts/Staking.sol#20-404)

BUSY (contracts/HederaResponseCodes sol#18) is never used in Staking (contracts/Staking.sol#20-404)

NOT SUPPORTED (contracts/HederaResponseCodes.sol#19) is never used in Staking (contracts/Staking.sol#20-404)

INVALID FILE ID (contracts/HederaResponseCodes.sol#21) is never used in Staking (contracts/Staking.sol#20-464)
INVALID_ACCOUNT_ID (contracts/HederaResponseCodes.sol#22) is never used in Staking (contracts/Staking.sol#20-404)
INVALID CONTRACT ID (contracts/HederaResponseCodes.sol#23) is never used in Staklng (contracts/Staking.sol#20-404)
INVALID TRANSACTION _ID (contracts/HederaResponseCodes.sol#24) is never used in Staking (contracts/Staking.sol#20-484)
RECEIPT NOT FOUND (contracts/HederaResponseCodes.sol#25) is never used in Staking (contracts/Staking.sol#20-484)
RECORD_NOT_FOUND (centracts/HederaResponseCodes.sol#26) is never used in Staking (contracts/Staking.sol#20-404)
INVALID_SOLIDITY_ID (contracts/HederaResponseCodes.sol#27} is never used in Staking (contracts/staking.sol#20-404)
UNKNOWN (contracts/HederaResponseCodes.sol#29) is never used in Staking (contracts/Staking.sol#20-404)

SUCCESS (contracts/HederaResponseCodes.sol#30) is never used in Staking (contracts/Staking.sol#20-484)

FAIL INVALID (contracts/HederaResponseCodes.sol#31) is never used in Staking (contracts/Staking.sol#20-404)

FAIL FEE (contracts/HederaResponseCodes.sol#32) is never used in Staking (contracts/Staking. sol#20-404)

FAIL_BALANCE (contracts/HederaResponseCodes.sol#33) is never used in Staking (contracts/Staking.sol#20-4604)

KEY_REQUIRED (contracts/HederaResponseCodes.sol#35) is never used in Staking (contracts/Staking.sol#20-404)

BAD_ENCODING (contracts/HederaResponseCodes.sol#36) is never used in Staking (contracts/Staking.sol#20-404)
INSUFFICIENT ACCOUNT BALAMNCE (contracts/HederaResponseCodes.sol#37) is never used in Staking (contracts/Staking.sol#20-404)
INVALID SOLIDITY_ ADDRESS (contracts/HederaResponseCodes.sol#38) is never used in Staking (contracts/Staking.sol#26-404)

CONTRACT SIZE LIMIT EXCEEDED (contracts/HederaResponseCodes.sol#41) is never used in Staking (contracts/Staking.sol#20-404)
LOCAL_CALL_MODIFICATION_ EXCEPTION (contracts/HederaResponseCodes.sol#42} is never used in Staking (contracts/staking.sol#20-404)
CONTRACT REVERT EXECUTED (contracts/HederaResponseCodes.sol#43) is never used in Staking (contracts/Staking.sol#28-404)

HederaResbonseCodes B
HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes
HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.

HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

HederaResponseCodes
HederaResponseCodes

HederaResponseCodes.
HederaResponseCodes.
HederaResponseCodes.

INVALID_RECEIVING NODE_ACCOUNT (contracts/HederaResponseCodes.sol#45) is never used in Staking (contracts/Staking.sol#20-404)
MISSING QUERY HEADER (contracts/HederaResponseCodes.sol#46) is never used in Staking (contracts/Staking.sol#20-464)
.ACCOUNT_UPDATE_FAILED (contracts/HederaResponseCodes.sol#48) is never used in Staking (contracts/Staking.sol#20-404)
INVALID KEY ENCODING (contracts/HederaResponseCodes.sol#49) is never used in Staking (contracts/Staking.sol#20-464)
NULL_SOLIDITY_ADDRESS (contracts/HederaResponseCodes.sol#50) is never used in Staking (contracts/Staking.sol#20-404)

CONTRACT UPDATE FAILED (contracts/HederaResponseCodes.sol#52) is never used in Staking (contracts/Staking.sol#20-404)
INVALID_QUERY_HEADER (contracts/HederaResponseCodes.sol#53) is never used in Staking (contracts/Staking.sol#20-404)
INVALID FEE SUBMITTED (contracts/HederaResponseCodes.sol#55) is never used in Staking (contracts/Staking.sol#20-404)
INVALID_PAYER_SIGNATURE (contracts/HederaResponseCodes.sol#56) is never used in Staking (contracts/Staking.sol#20-404)

.KEY _NOT PROVIDED (contracts/HederaResponseCodes.sol#58) is never used in Staking (contracts/Staking.sol#20-464)
INVALID_EXPIRATION_TIME (contracts/HederaResponseCodes.sol#59) is never used in Staking (contracts/Staking.sol#20-404)
NO_WACL_KEY (contracts/HederaResponseCodes.sol#60) is never used in Staking (contracts/Staking.sol#20-404)

FILE_CONTENT_EMPTY (contracts/HederaResponseCodes.sol#61) is never used in Stakmg (contracts/Staking.sol#20-404)

INVALID ACCOUNT AMOUNTS (contracts/HederaResponseCodes.sol#62) is never used in Staking (contracts/Staking.sol#20-404)
.EMPTY_TRANSACTION_BODY (contracts/HederaResponseCodes.sol#63) is never used in Staking (contracts/Staking.sol#20-404)

INVALID TRANSACTION BODY (contracts/HederaResponseCodes.sol#64) is never used in Staking (contracts/Staking.sol#20-404)
INVALID_SIGNATURE TYPE_MISMATCHING KEY (contracts/HederaResponseCodes.sol#66) is never used in Staking (contracts/Staking.sol#20-404)
INVALID SIGNATURE COUNT MISMATCHING KEY (contracts/HederaResponseCodes.sol#67) is never used in Staking (contracts/staking.sol#20-404)
EMPTY_LIVE_HASH_BODY (contracts/HederaResponseCodes.sol#69) is never used in Staking (contracts/Staking.sol#20-404)
EMPTY_LIVE HASH (contracts/HederaResponseCodes.sol#70) is never used in Staking (contracts/Staking.sol#20-404)
EMPTY_LIVE_HASH_KEYS (contracts/HederaResponseCodes.sol#71) is never used in Staking (contracts/Staking.sol#20-464)

INVALID LIVE HASH SIZE (contracts/HederaResponseCodes.sol#72) is never used in Staking (contracts/Staking.sol#20-404)
EMPTY_QUERY_BODY (contracts/HederaResponseCodes.sol#74) is never used in Staklng (contracts/Staking.sol#20-404)

EMPTY_LIVE HASH QUERY (contracts/HederaResponseCodes.sol#75) is never used in Staking (contracts/Staking.sol#20-404)
LIVE_HASH_NOT_FOUND (contracts/HederaResponseCodes.sol#76) is never used in Stakmg (contracts/Staking.sol#20-404)

.ACCOUNT ID DOES NOT EXIST (contracts/HederaResponseCodes.sol#77) is never used in Staking (contracts/Staking.sol#20-404)

LIVE HASH_ALREADY_EXISTS (contracts/HederaResponseCodes.sol#78) is never used in Staking (contracts/Staking.sol#20-404)
INVALID FILE WACL (contracts/HederaResponseCodes.sol#80) is never used in Staking (contracts/Staking.sol#20-404)
SERIALIZATION_FAILED (contracts/HederaResponseCodes.sol#81) is never used in Staking (contracts/Staking.sol#20-404)
.TRANSACTION OVERSIZE (contracts/HederaResponseCodes.sol#82) is never used in Staking (contracts/Staking.sol#20-404)

. TRANSACTION_TOO_MANY_LAYERS (contracts/HederaResponseCodes sol#83) is never used in Staking (contracts/Staking.sol#20-404)
CONTRACT DELETED (contracts/HederaResponseCodes.sol#84) is never used in Staking (contracts/Staking.sol#20-404)
PLATFORM_NOT_ACTIVE (contracts/HederaResponseCodes.sol#86) is never used in Staking (contracts/Staking.sol#20-404)

KEY PREFIX MISMATCH (contracts/HederaResponseCodes.sol#87) is never used in Staking (contracts/Staking.sol#20-404)
PLATFORM_TRANSACTION_NOT_CREATED (contracts/HederaResponseCodes.sol#88) is never used in Staking (contracts/Staking.sol#20-404)
INVALID RENEWAL PERIOD (contracts/HederaResponseCodes.sol#89) is never used in Staking (contracts/Staking.sol#20-4084)
INVALID_PAYER_ACCOUNT_ID (contracts/HederaResponseCodes.sol#90) is never used in Staking (contracts/Staking.sol#20-404)
.ACCOUNT DELETED (contracts/HederaResponseCodes.sol#91) is never used in Staking (contracts/Staking.sol#20-464)

FILE_DELETED (contracts/HederaResponseCodes.sol#92) is never used in Staking (contracts/Staking.sol#20-404)

.ACCOUNT REPEATED IN ACCOUNT AMOUNTS (contracts/HederaResponseCodes.sol#93) is never used in Staking (contracts/Staking.sol#20-404)
SETTING_NEGATIVE_ACCOUNT_BALANCE (contracts/HederaResponseCodes.sol#94) is never used in Staking (contracts/Staking.sol#20-404)
OBTAINER REQUIRED (contracts/HederaResponsecodes.501#95) is never used in Staking (contracts/Staking.sol#20-404)
OBTAINER_SAME_CONTRACT_ID (contracts/HederaResponseCodes.sol#96) is never used in Staking (contracts/Staking.sol#20-404)
OBTAINER DOES NOT EXIST (contracts/HederaResponseCodes.sol#97) is never used in Staking (contracts/Staking.sol#20-404)
MODIFYING_IMMUTABLE_CONTRACT (contracts/HederaResponseCodes.sol#38) is never used in Staking (contracts/Staking.sol#20-404)
.FILE_SYSTEM EXCEPTION (contracts/HederaResponseCodes.sol#99) is never used in Staking (contracts/Staking.sol#20-404)
.AUTORENEW_DURATION_NOT_IN_RANGE (contracts/HederaResponseCodes.sol#100) is never used in Staking (contracts/Staking.sol#20-404)
ERROR_DECODING BYTESTRING (contracts/HederaResponseCodes.sol#101) is never used in Staking (contracts/Staking.sol#20-404)
CONTRACT_FILE_EMPTY (contracts/HederaResponseCodes.sol#102) is never used in Staklng (contracts/Staking.sol#20-404)

CONTRACT BYTECODE_EMPTY (contracts/HederaResponseCodes.sol#163) is never used in Staking (contracts/Staking.sol#20-404)

®* No major issues were found by Slither.

66

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	INTRODUCTION
	TESTING
	REWARD MECHANISM
	WITHDRAW FUNDS MECHANISM
	UNDELEGATION MECHANISM

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

