
StaderLabs -
Oracle

Golang Security Audit

Prepared by: Halborn

Date of Engagement: May 29th, 2023 - June 1st, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 SCOPE 8

1.4 TEST APPROACH & METHODOLOGY 9

2 RISK METHODOLOGY 10

2.1 EXPLOITABILITY 11

2.2 IMPACT 12

2.3 SEVERITY COEFFICIENT 14

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) UNHANDLED COINGECKO RESPONSES CAN SET UNDESIRED PRICES

ON CHAIN - HIGH 19

Description 19

Code Location 20

Risk Level 21

Code Location 21

Recommendation 22

Remediation Plan 22

4.2 (HAL-02) ORACLE PRICE FEEDER IS VULNERABLE TO MANIPULATION BY A

SINGLE MALICIOUS FEED - LOW(4.2) 23

Description 23

Code Location 23

1

BVSS 24

Recommendation 24

Remediation Plan 24

4.3 (HAL-03) PRIVATE KEY IN THE ENVIRONMENT VARIABLES - LOW(2.5) 26

Description 26

Code Location 27

BVSS 27

Recommendation 27

Remediation Plan 28

4.4 (HAL-04) DOCKER IMAGE RUNNING AS ROOT - LOW(3.8) 29

Description 29

Code Location 29

BVSS 30

Recommendation 30

Remediation Plan 30

4.5 (HAL-05) MAINNET CONFIGURATION ADDRESS IS UNDEFINED IN STADER-

CONFIGADDRESSSTR - INFORMATIONAL(0.0) 31

Description 31

Code Location 31

BVSS 31

Recommendation 32

Remediation Plan 32

4.6 (HAL-06) LACK OF EXTENSIVE TEST COVERAGE - INFORMATIONAL(0.0)

33

Description 33

Code Location 33

BVSS 33

2

Recommendation 33

Remediation Plan 33

4.7 (HAL-07) POTENTIAL HTTP REQUEST TIMEOUT MISSING IN HTTP CLIENT

CONFIGURATION - INFORMATIONAL(0.0) 34

Description 34

Code Location 34

BVSS 35

Recommendation 35

Remediation Plan 35

4.8 (HAL-08) ABSENCE OF CHECK FOR whenNotPaused CONDITION IN GOLANG

CODEBASE - INFORMATIONAL(0.0) 36

Description 36

Code Location 36

BVSS 38

Recommendation 38

Remediation Plan 38

4.9 (HAL-09) ABI INCOMPATIBILITY WITH RECENT CODEBASE IN GO FILES -

INFORMATIONAL(0.0) 39

Description 39

Code Location 39

BVSS 39

Recommendation 39

4.10 (HAL-10) HARDCODED URL IN THE FUNCTIONS - INFORMATIONAL(0.0) 40

Description 40

Code Location 40

BVSS 41

Recommendation 42

3

Remediation Plan 42

4.11 (HAL-11) LACK OF HTTP RESPONSE STATUS CODE CHECK IN THE FUNC-

TIONS - INFORMATIONAL(0.0) 43

Description 43

Code Location 43

BVSS 45

Recommendation 45

Remediation Plan 45

4.12 (HAL-12) LACK OF ERROR HANDLING FOR NON-EXISTENT CHAINID IN

ConvertTimestampToSlotAndEpoch FUNCTION - INFORMATIONAL(0.0) 46

Description 46

Code Location 46

BVSS 46

Recommendation 47

Remediation Plan 47

5 RECOMMENDATIONS OVERVIEW 48

6 AUTOMATED TESTING 50

Description 51

Semgrep - Security Analysis Output Sample 51

Semgrep Results 52

Gosec - Security Analysis Output Sample 53

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/30/2023 Alejandro Taibo

0.2 Document Updates 06/01/2023 Alejandro Taibo

0.3 Document Updates 06/01/2023 Gokberk Gulgun

0.4 Draft Review 06/02/2023 Gokberk Gulgun

0.5 Draft Review 06/05/2023 Gabi Urrutia

1.0 Remediation Plan 06/20/2023 Alejandro Taibo

1.1 Remediation Plan Review 06/20/2023 Gokberk Gulgun

1.2 Remediation Plan Review 06/20/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Alejandro Taibo Halborn Alejandro.Taibo@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Alejandro.Taibo@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

StaderLabs engaged Halborn to conduct a security audit on their oracle

repositories beginning on May 29th, 2023 and ending on June 1st, 2023.

The security audit was scoped to the repositories provided to the Halborn

team.

1.2 AUDIT SUMMARY

The team at Halborn was provided four days for the engagement and assigned

two full-time security engineers to audit the security of the oracle im-

plementation. The security engineers are blockchain and smart-contract

security experts with advanced penetration testing, smart-contract hack-

ing, and deep knowledge of multiple blockchain protocols.

The purpose of this audit to achieve the following:

• Ensure that oracle Implementation functions as intended.

• Identify potential security issues with the oracle.

In summary, Halborn identified some security risks that were mostly

addressed by the StaderLabs team.

1.3 SCOPE

IN-SCOPE CODE & COMMIT:

• Repository: stader-guardian

• Commit ID: b02bb9cf4a2863b00c16e629535c6ab96777af49

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/stader-guardian
https://github.com/stader-labs/stader-guardian/tree/b02bb9cf4a2863b00c16e629535c6ab96777af49

REMEDIATION COMMIT:

• Repository: stader-guardian

• Commit ID: d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of the custom modules. While manual testing is recommended

to uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of structures and can quickly identify

items that do not follow security best practices. The following phases

and associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Static Analysis of security for scoped repository, and imported func-

tions. (e.g., staticcheck, gosec, unconvert, codeql, ineffassign

and semgrep)

• Manual Assessment for discovering security vulnerabilities on code-

base.

• Ensuring correctness of the codebase.

• Dynamic Analysis on files and modules related to the project.

• Custom fuzz testing using Go’s built-in fuzzing tools.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/stader-guardian
https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

12

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

13

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

14

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

15

EX
EC

UT
IV

E
OV

ER
VI

EW

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 1 0 3 8

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

UNHANDLED COINGECKO RESPONSES CAN
SET UNDESIRED PRICES ON CHAIN

High SOLVED - 06/20/2023

ORACLE PRICE FEEDER IS VULNERABLE
TO MANIPULATION BY A SINGLE

MALICIOUS FEED
Low (4.2) RISK ACCEPTED

PRIVATE KEY IN THE ENVIRONMENT
VARIABLES

Low (2.5) RISK ACCEPTED

DOCKER IMAGE RUNNING AS ROOT Low (3.8) SOLVED - 06/20/2023

MAINNET CONFIGURATION ADDRESS IS
UNDEFINED IN STADERCONFIGADDRESSSTR

Informational
(0.0)

SOLVED - 06/20/2023

LACK OF EXTENSIVE TEST COVERAGE
Informational

(0.0)
PARTIALLY SOLVED -

06/20/2023

POTENTIAL HTTP REQUEST TIMEOUT
MISSING IN HTTP CLIENT

CONFIGURATION

Informational
(0.0)

ACKNOWLEDGED

ABSENCE OF CHECK FOR whenNotPaused
CONDITION IN GOLANG CODEBASE

Informational
(0.0)

ACKNOWLEDGED

ABI INCOMPATIBILITY WITH RECENT
CODEBASE IN GO FILES

Informational
(0.0)

SOLVED - 06/20/2023

HARDCODED URL IN THE FUNCTIONS
Informational

(0.0)
ACKNOWLEDGED

LACK OF HTTP RESPONSE STATUS CODE
CHECK IN THE FUNCTIONS

Informational
(0.0)

SOLVED - 06/20/2023

LACK OF ERROR HANDLING FOR
NON-EXISTENT CHAINID IN

ConvertTimestampToSlotAndEpoch
FUNCTION

Informational
(0.0)

ACKNOWLEDGED

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) UNHANDLED COINGECKO
RESPONSES CAN SET UNDESIRED PRICES
ON CHAIN - HIGH

Description:

The program makes use of Coingecko API in order to fetch prices, sending

this data to StaderOracle smart contract to perform some operations on-

chain over these values. Once prices are fetched in a specific range

of time, the program calculates the average of all fetched prices. This

average will act as a simple TWAP since all received prices are supposed

to be gathered during a period of time specified by parameters in the

endpoint request. These prices come wrapped in the following structure:

Listing 1

1 type CoingeckoResponse struct {

2 Prices [][] float64 `json:" prices"`

3 MarketCaps [][] float64 `json:" market_caps"`

4 TotalVolumes [][] float64 `json:" total_volumes"`

5 }

However, this endpoint under some circumstances can return an empty struct

whose Prices array is also empty. Then, during the average calculation,

the program iterates over the Prices array in order to add each value

into a single variable, since there are no prices in the struct, the

averagePrice variable will be 0.0. Just after this loop, this variable

is divided by then length of Prices array, which is 0 due this array is

empty. Naturally, it’s reasonable to think this operation will raise an

error, but Golang returns NaN value in these kinds of operations. So,

this function will end up returning NaN as averagePrice that will impact

directly to the on-chain prices.

This returned NaN value won’t raise any errors after its function call

returns, but rather it will be converted to a huge number since this

value is used as an argument in Float64ToUint256() function. This

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

function always returns -9223372036854775808 number for NaN arguments,

which is later submitted to the smart contract, setting a price of

115792089237316195...876274864128 in the StaderOracle contract.

Code Location:

Listing 2: external/coingecko.go (Lines 31,37,40)

17 func FetchPriceFromCoingecko(from int64 , to int64) (float64 , error

ë) {

18 url := fmt.Sprintf("https :// api.coingecko.com/api/v3/coins/

ë stader/market_chart/range?vs_currency=eth&from=%d&to=%d", from , to

ë)

19 response , err := http.Get(url)

20 if err != nil {

21 return 0, fmt.Errorf("error fetching data from Coingecko:

ë %w", err)

22 }

23 defer response.Body.Close ()

24

25 body , err := io.ReadAll(response.Body)

26 if err != nil {

27 return 0, fmt.Errorf("error reading response body: %w",

ë err)

28 }

29

30 var coingeckoResponse CoingeckoResponse

31 err = json.Unmarshal(body , &coingeckoResponse)

32 if err != nil {

33 return 0, fmt.Errorf("error unmarshalling response: %w",

ë err)

34 }

35

36 averagePrice := 0.0

37 for _, price := range coingeckoResponse.Prices {

38 averagePrice += price [1]

39 }

40 averagePrice /= float64(len(coingeckoResponse.Prices))

41

42 return averagePrice , nil

43 }

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 3: cmd/sdPrice/task.go (Lines 42,48,61)

42 sdPrice , err := external.FetchPriceFromCoingecko(

ë blockTimestamp.Add(-24* time.Hour).Unix(), blockTimestamp.Unix())

43 if err != nil {

44 return fmt.Errorf("failed to get SD price: %w", err)

45 }

46 fmt.Println("SD Price In ETH: ", sdPrice)

47

48 if sdPrice == 0 {

49 fmt.Println("SD Price is 0, not submitting")

50 return nil

51 }

52

53 auth , err := bind.NewKeyedTransactorWithChainID(context.Config

ë .PrivateKey , new(big.Int).SetUint64(uint64(context.Config.ChainId)

ë))

54 if err != nil {

55 return fmt.Errorf("failed to create transactor: %w", err)

56 }

57

58 sdPriceData := contracts.SDPriceData{ReportingBlockNumber:

ë blockNumber , SdPriceInETH: Float64ToUint256(sdPrice)}

59 fmt.Printf("SD Price Data: %+v\n", sdPriceData)

60

61 tx , err := staderOracle.SubmitSDPrice(auth , sdPriceData)

Risk Level:

Likelihood - 3

Impact - 5

Code Location:

After executing the program and receiving an empty struct as response

from CoinGecko, the execution prints the following logs:

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

The aforementioned program execution results in the oracle price being

set to a huge value in the mocked smart contract:

Recommendation:

The program should handle this kind of responses since, as it was explained

above, it can lead to unexpected and devastating results that could affect

the several smart contracts.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by checking if the problem-

atic division results in a NaN value in the following commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.2 (HAL-02) ORACLE PRICE FEEDER IS
VULNERABLE TO MANIPULATION BY A
SINGLE MALICIOUS FEED - LOW (4.2)

Description:

The system currently relies on a price-feeder component, which fetches

average prices from CoinGecko and sends this data to the smart contract

for on-chain commitment. We have identified a vulnerability within this

system, where the price of an asset can be manipulated by a single

compromised or malfunctioning third-party feed. This poses a risk to the

accuracy of our data and the reliability of transactions dependent on

this data.

The vulnerability stems from the FetchPriceFromCoingecko function within

the system, which fetches and computes average price data from CoinGecko

for a given time range. If the data source is compromised, it can lead

to erroneous price data being committed on-chain, with potential adverse

effects on the system.

Code Location:

Listing 4: external/coingecko.go

17 func FetchPriceFromCoingecko(from int64 , to int64) (float64 , error

ë) {

18 url := fmt.Sprintf("https :// api.coingecko.com/api/v3/coins/

ë stader/market_chart/range?vs_currency=eth&from=%d&to=%d", from , to

ë)

19 response , err := http.Get(url)

20 if err != nil {

21 return 0, fmt.Errorf("error fetching data from Coingecko:

ë %w", err)

22 }

23 defer response.Body.Close ()

24

25 body , err := io.ReadAll(response.Body)

26 if err != nil {

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

27 return 0, fmt.Errorf("error reading response body: %w",

ë err)

28 }

29

30 var coingeckoResponse CoingeckoResponse

31 err = json.Unmarshal(body , &coingeckoResponse)

32 if err != nil {

33 return 0, fmt.Errorf("error unmarshalling response: %w",

ë err)

34 }

35

36 averagePrice := 0.0

37 for _, price := range coingeckoResponse.Prices {

38 averagePrice += price [1]

39 }

40 averagePrice /= float64(len(coingeckoResponse.Prices))

41

42 return averagePrice , nil

43 }

BVSS:

AO:A/AC:M/AX:M/C:L/I:H/A:L/D:L/Y:N/R:N/S:U (4.2)

Recommendation:

It is recommended to consider the robustness and redundancy of the price

feed sources. To mitigate the risk of price manipulation, we might

consider incorporating multiple price feeds and aggregating the data to

establish a more reliable and resilient pricing model.

Reference : Synthetix Response to Oracle Incident

Remediation Plan:

RISK ACCEPTED: The StaderLabs team states that SD prices are updated

multiple times a day. As a result, different Oracles read the API

values at different points in time. In order to manage these potential

discrepancies, the system has been designed to take the median of the

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.synthetix.io/response-to-oracle-incident/

SD prices from submitted values as the true value, thereby mitigating

any issues arising from outliers. The impact from lack an of consensus

affects only the secondary security collateral and has no effect on Staked

ETH. The StaderLabs team will bolster this logic with data pulled from

other API providers and on chain TWAP in the subsequent upgrades.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.3 (HAL-03) PRIVATE KEY IN THE
ENVIRONMENT VARIABLES - LOW (2.5)

Description:

The provided configuration contains sensitive data, such as the private

key. Storing these values in a plain-text configuration file or envi-

ronment variables can make it easier for attackers to gain unauthorized

access to the oracle.

The insecure storage and handling of sensitive configuration data on a

single VPS server can lead to various negative consequences, including

but not limited to:

• Sensitive data leakage: Exposure of sensitive information, such as

API keys, private keys, and login credentials, can enable attackers

to gain unauthorized access to the service and its associated re-

sources. This can result in further unauthorized actions, such as

data manipulation or theft, disruption of services, and reputational

damage to the organization.

• Unauthorized access to the API: With access to the API keys and cre-

dentials, attackers can make unauthorized API calls and potentially

gain access to sensitive data, manipulate data, or perform other

malicious activities.

• Potential loss of assets: Exposure of private keys for blockchain

contracts can lead to unauthorized transactions or manipulation of

the contract, resulting in potential loss of assets or funds.

• Increased risk of server compromise: Storing sensitive data in

plaintext on a VPS server increases the attack surface, making

it more attractive for attackers to target the server. A

successful compromise of the server can lead to further damage,

such as the installation of malware, lateral movement within the

infrastructure, or complete takeover of the server.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 5: .env.sample

1 ExecutionHost=

2 ConsensusHost=

3 PrivateKey=

4 ChainId=

BVSS:

AO:A/AC:M/AX:M/C:H/I:H/A:M/D:L/Y:N/R:P/S:U (2.5)

Recommendation:

To mitigate the potential risks and secure the sensitive configuration

data on the VPS server, the following steps are suggested:

• Store sensitive data securely using a secret manager like HashiCorp

Vault or AWS Secrets Manager. Avoid using environment variables

for sensitive data, and instead, retrieve them directly from the

secret manager in the service code.

• Harden the VPS server by implementing security best practices, such

as keeping the server up-to-date, disabling unnecessary services,

and restricting access using firewall rules and strong authentication

mechanisms.

• Segregate responsibilities by deploying separate servers or con-

tainers for different components of the service. For example, use a

dedicated server or container for the API, another for the database,

and another for the secret manager.

• Regularly monitor and audit the VPS server for signs of intrusion

or other security issues. Configure intrusion detection and pre-

vention systems (IDPS) and implement centralized logging for better

visibility and faster incident response.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

• Enable encryption for data in transit and at rest to protect sensi-

tive data from being intercepted or accessed by unauthorized users.

Remediation Plan:

RISK ACCEPTED: The StaderLabs team assures that all Oracle operators

are recognized and reputable members within the Ethereum community. A

comprehensive list of these operators can be found here. Furthermore,

for the insertion of erroneous data into contracts, collusion among a

majority of Oracle nodes would be necessary, an occurrence that is highly

unlikely.

In addition to this, The StaderLabs team states that stringent safeguards

have been put in place for critical Oracle updates, such as exchange rate

adjustments. Also, Oracle operators are technically adept and thus fully

equipped to ensure the security of on-premises data.

The StaderLabs team firmly believes that the probability of a successful

attack is virtually non-existent under the current framework. Nonethe-

less, they continue to strive for excellence and improvement, with plans

underway to enhance data storage systems in future upgrades.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://snapshot.org/#/staderdao.eth/proposal/0x704905672648882c229480d501ab7d59da94ade47762eda163e7a3919082b044

4.4 (HAL-04) DOCKER IMAGE RUNNING
AS ROOT - LOW (3.8)

Description:

Docker containers generally run with root privileges by default. This

allows for unrestricted container management, meaning a user could in-

stall system packages, edit configuration files, bind privileged ports,

etc. During static analysis, it was observed that the docker image is

maintained through the root user.

Code Location:

Listing 6: Dockerfile

3 FROM golang :1.20

4

5 # Set destination for COPY

6 WORKDIR /app

7

8 # Download Go modules

9 COPY go.mod go.sum ./

10 RUN go mod download

11

12 COPY . ./

13

14 # Build

15 RUN CGO_ENABLED =0 GOOS=linux go build -C cmd/sdPrice -o ../../

ë submit -sd -price

16 RUN CGO_ENABLED =0 GOOS=linux go build -C cmd/validatorStats -o

ë ../../ submit -validator -stats

17 RUN CGO_ENABLED =0 GOOS=linux go build -C cmd/withdrawnValidators -

ë o ../../ submit -withdrawn -validators

18 RUN CGO_ENABLED =0 GOOS=linux go build -C cmd/rewardsMerkle -o

ë ../../ submit -rewards -merkle

19 RUN CGO_ENABLED =0 GOOS=linux go build -C cmd/exchangeRate -o

ë ../../ submit -exchange -rate

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:M/C:M/I:L/A:N/D:N/Y:N/R:N/S:U (3.8)

Recommendation:

It is recommended to build the Dockerfile and run the container as a

non-root user.

Listing 7: Reference

1 USER 1001: this is a non -root user UID , and here it is assigned to

ë the image to run the current container as an unprivileged user.

ë By doing so , the added security and other restrictions mentioned

ë above are applied to the container.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by adding a new non-root

user in the Dockerfile and executing commands through it in the following

commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.5 (HAL-05) MAINNET CONFIGURATION
ADDRESS IS UNDEFINED IN
STADERCONFIGADDRESSSTR -
INFORMATIONAL (0.0)

Description:

The StaderConfigAddressStr variable is expected to store the contract

addresses for different Ethereum networks. In the present configuration,

the goerli test network is mapped correctly to an address. However,

the address for the mainnet is missing, and this could lead to failure

in operations that require interaction with the Stader contract on the

mainnet.

Potential implications of this issue include:

• Failure in contract deployments to the mainnet.

• Breakdown in interaction between the Stader contract and other on-

chain services.

• Disruptions in services relying on the Stader contract.

Code Location:

Listing 8: internal/common.go

17 var StaderConfigAddressStr = map[uint]string{

18 1: "", // mainnet

19 5: "0x8eF9036E524ce6340eF71844C29508C26Fbbe478", // goerli

20 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

To resolve this issue, it is strongly recommended to define the mainnet

address in the StaderConfigAddressStr map, following the proper deploy-

ment of the Stader contract to the mainnet.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by including the mainnet

address in the following commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.6 (HAL-06) LACK OF EXTENSIVE TEST
COVERAGE - INFORMATIONAL (0.0)

Description:

Adequate test coverage and regular reporting is an essential process

to ensure the codebase works as intended. Insufficient code coverage

can lead to unexpected issues and regressions due to changes in service

implementation.

Code Location:

Code Location

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

Make sure that the coverage report produced via go test -cover covers all

functions.

Remediation Plan:

PARTIALLY SOLVED: The StaderLabs team partially solved the issue by in-

cluding some tests to cover some of the project’s functions in the

following commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/tree/b02bb9cf4a2863b00c16e629535c6ab96777af49
https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.7 (HAL-07) POTENTIAL HTTP REQUEST
TIMEOUT MISSING IN HTTP CLIENT
CONFIGURATION - INFORMATIONAL (0.0)

Description:

In the existing code, the http.Get function is used for making HTTP

requests. This approach doesn’t specify a timeout duration, meaning that

if the server does not respond, the request could hang indefinitely. This

situation could lead to resources being consumed unnecessarily, affecting

the overall performance and reliability of the application.

Consider a scenario where the requested server is down, unresponsive, or

the network is congested. In such a case, the HTTP request will hang

indefinitely as there is no timeout defined.

Code Location:

Listing 9: external/beacon.go

72 func GetValidatorDetails(consensusHost string , pubKey string ,

ë slotNumber uint64) (ValidatorBeaconResponse , error) {

73 url := fmt.Sprintf("%s/eth/v1/beacon/states /%d/validators /%s",

ë consensusHost , slotNumber , pubKey)

74 resp , err := http.Get(url)

75 if err != nil {

76 return ValidatorBeaconResponse {}, fmt.Errorf("failed to

ë fetch validator data: %w", err)

77 }

78 defer resp.Body.Close ()

79

80 if resp.StatusCode != http.StatusOK {

81 return ValidatorBeaconResponse{

82 Balance: big.NewInt (0),

83 Status: string(NotFound),

84 Validator: ValidatorBeacon{

85 Slashed: false ,

86 Pubkey: pubKey ,

87 },

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

88 }, nil

89 }

90

91 body , err := io.ReadAll(resp.Body)

92 if err != nil {

93 return ValidatorBeaconResponse {}, fmt.Errorf("failed to

ë read response body: %w", err)

94 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

To mitigate this issue, it is suggested to use a custom HTTP client with

a defined timeout. This change ensures that the HTTP request will be

terminated if it exceeds the defined timeout period, preventing resource

wastage and maintaining application performance.

Listing 10

1 var netClient = &http.Client{

2 Timeout: time.Second * 10, // Define a suitable timeout

3 }

4

5 url := "consensusHost"

6 resp , err := netClient.Get(url) /

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged this issue.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.8 (HAL-08) ABSENCE OF CHECK FOR
whenNotPaused CONDITION IN GOLANG
CODEBASE - INFORMATIONAL (0.0)

Description:

The provided Golang script is communicating with a smart contract that

has a whenNotPaused modifier on some functions, but the script does not

check whether the contract is paused before making these calls. This

discrepancy could cause the calls to fail unexpectedly.

The issue occurs when the Golang script attempts to call the

SubmitSocializingRewardsMerkleRoot function, which has the whenNotPaused

modifier in the smart contract.

If the contract is paused, the transaction will fail but the Golang

script will not understand why, leading to potential confusion and the

disruption of normal operations.

Code Location:

Listing 11: rewardsMerkle/task.go

86 func fetchAndSubmit(staderOracle *contracts.StaderOracle , poolId

ë uint8 , auth *bind.TransactOpts) error {

87 blockNumber , err := staderOracle.

ë GetMerkleRootReportableBlockByPoolId (&bind.CallOpts{}, poolId)

88 if err != nil {

89 return fmt.Errorf("failed to get latest reportable block:

ë %w", err)

90 }

91 fmt.Printf("block number: %d\n", blockNumber)

92

93 lastIndex , err := cmd.ReadBlockNumber(fileName + string(poolId

ë))

94 if err != nil {

95 lastIndex = big.NewInt (0)

96 }

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

97

98 index , err := staderOracle.GetCurrentRewardsIndexByPoolId (&

ë bind.CallOpts{}, poolId)

99 if err != nil {

100 return err

101 }

102 fmt.Printf("rewards index: %d\n", index)

103

104 if big.NewInt(index.Int64 ()).Cmp(lastIndex) == 0 {

105 fmt.Printf("No new index to process. Last processed index:

ë %d\n", lastIndex)

106 return nil

107 }

108

109 response , err := external.FetchRewardsMerkle(int(index.Uint64

ë ()), int(poolId))

110 if err != nil {

111 return err

112 }

113 transformedData , err := response.Into(index , poolId ,

ë blockNumber)

114 if err != nil {

115 return err

116 }

117 fmt.Printf("transformed data: %+v\n", transformedData)

118

119 tx , err := staderOracle.SubmitSocializingRewardsMerkleRoot(

ë auth , transformedData)

120 if err != nil {

121 return fmt.Errorf("failed to submit Merkle Root: %w", err)

122 }

123 fmt.Printf("Submitted transaction hash: %s\n", tx.Hash().Hex()

ë)

124

125 err = cmd.WriteBlockNumber(fileName+string(poolId), big.NewInt

ë (index.Int64 ()))

126 if err != nil {

127 return fmt.Errorf("error writing counter file: %v", err)

128 }

129

130 return nil

131 }

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

To address this issue, add a check for the contract’s pause status before

making function calls that include the whenNotPaused modifier. If the

contract is paused, either handle this condition gracefully or display

an appropriate error message. For instance:

Listing 12

1 isPaused , err := staderOracle.GetPaused (&bind.CallOpts {})

2 if err != nil {

3 return fmt.Errorf("failed to get contract pause status: %w",

ë err)

4 }

5 if isPaused {

6 return fmt.Errorf("operation failed: contract is paused")

7 }

8

9 tx , err := staderOracle.SubmitSocializingRewardsMerkleRoot(auth ,

ë transformedData)

10 // ...

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged this issue.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.9 (HAL-09) ABI INCOMPATIBILITY
WITH RECENT CODEBASE IN GO FILES -
INFORMATIONAL (0.0)

Description:

After the recent updates in the codebase, it appears that the ABI (Appli-

cation Binary Interface) defined in go files may no longer be compatible

with the current smart contract. ABI incompatibility can lead to issues

with communication between the Ethereum blockchain and the application.

This can cause problems with executing transactions or fetching data from

smart contracts.

Code Location:

Code Location

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

It is recommended to revise the ABI specifications in go files to ensure

compatibility with the current smart contract code.

Remediation Plan

SOLVED: The StaderLabs team solved the issue by applying the most recent

changes in ABI specification in the following commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/tree/b02bb9cf4a2863b00c16e629535c6ab96777af49
https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.10 (HAL-10) HARDCODED URL IN THE
FUNCTIONS - INFORMATIONAL (0.0)

Description:

The URL in the functions are hard-coded. This could potentially cause

maintenance and scalability issues in the future, especially if the URL

endpoint changes or if the function needs to be adapted for different

environments, such as testing, development, and production. Currently,

the function is rigidly tied to a specific URL, and any change to this

URL would require a modification in the code itself.

Code Location:

Listing 13: external/stader.go (Line 60)

59 func FetchRewardsMerkle(cycle_id int , pool_id int) (*

ë RewardsMerkleResponse , error) {

60 url := "https ://stage -ethx -offchain.staderlabs.click/

ë merklesForElRewards/root/" + strconv.Itoa(cycle_id) + "/" +

ë strconv.Itoa(pool_id)

61

62 resp , err := http.Get(url)

63 if err != nil {

64 return nil , err

65 }

66 defer resp.Body.Close ()

67

68 body , err := io.ReadAll(resp.Body)

69 if err != nil {

70 return nil , err

71 }

72

73 var apiResponse RewardsMerkleResponse

74 err = json.Unmarshal(body , &apiResponse)

75 if err != nil {

76 return nil , err

77 }

78

79 return &apiResponse , nil

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

80 }

Listing 14: external/coingecko.go (Line 18)

17 func FetchPriceFromCoingecko(from int64 , to int64) (float64 , error

ë) {

18 url := fmt.Sprintf("https :// api.coingecko.com/api/v3/coins/

ë stader/market_chart/range?vs_currency=eth&from=%d&to=%d", from , to

ë)

19 response , err := http.Get(url)

20 if err != nil {

21 return 0, fmt.Errorf("error fetching data from Coingecko:

ë %w", err)

22 }

23 defer response.Body.Close ()

24

25 body , err := io.ReadAll(response.Body)

26 if err != nil {

27 return 0, fmt.Errorf("error reading response body: %w",

ë err)

28 }

29

30 var coingeckoResponse CoingeckoResponse

31 err = json.Unmarshal(body , &coingeckoResponse)

32 if err != nil {

33 return 0, fmt.Errorf("error unmarshalling response: %w",

ë err)

34 }

35

36 averagePrice := 0.0

37 for _, price := range coingeckoResponse.Prices {

38 averagePrice += price [1]

39 }

40 averagePrice /= float64(len(coingeckoResponse.Prices))

41

42 return averagePrice , nil

43 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Instead of hardcoding the URL directly within the function, it’s recom-

mended to:

• Use configuration files or environment variables: This approach

is safer and makes your application more flexible. In production

environments, you may have different URLs, credentials, or other

data, and using configuration files or environment variables allows

you to easily switch between different setups without changing the

code.

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged this issue.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.11 (HAL-11) LACK OF HTTP RESPONSE
STATUS CODE CHECK IN THE FUNCTIONS -
INFORMATIONAL (0.0)

Description:

In the provided the functions, while errors during the HTTP request

and the reading of the response body are properly handled, there is no

validation that the HTTP response status code indicates success. This

means that the function may proceed to process an unexpected response as

if it were valid data, potentially leading to obscure errors later in the

application’s execution.

Code Location:

Listing 15: external/stader.go

59 func FetchRewardsMerkle(cycle_id int , pool_id int) (*

ë RewardsMerkleResponse , error) {

60 url := "https ://stage -ethx -offchain.staderlabs.click/

ë merklesForElRewards/root/" + strconv.Itoa(cycle_id) + "/" +

ë strconv.Itoa(pool_id)

61

62 resp , err := http.Get(url)

63 if err != nil {

64 return nil , err

65 }

66 defer resp.Body.Close ()

67

68 body , err := io.ReadAll(resp.Body)

69 if err != nil {

70 return nil , err

71 }

72

73 var apiResponse RewardsMerkleResponse

74 err = json.Unmarshal(body , &apiResponse)

75 if err != nil {

76 return nil , err

77 }

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

78

79 return &apiResponse , nil

80 }

Listing 16: external/coingecko.go

17 func FetchPriceFromCoingecko(from int64 , to int64) (float64 , error

ë) {

18 url := fmt.Sprintf("https :// api.coingecko.com/api/v3/coins/

ë stader/market_chart/range?vs_currency=eth&from=%d&to=%d", from , to

ë)

19 response , err := http.Get(url)

20 if err != nil {

21 return 0, fmt.Errorf("error fetching data from Coingecko:

ë %w", err)

22 }

23 defer response.Body.Close ()

24

25 body , err := io.ReadAll(response.Body)

26 if err != nil {

27 return 0, fmt.Errorf("error reading response body: %w",

ë err)

28 }

29

30 var coingeckoResponse CoingeckoResponse

31 err = json.Unmarshal(body , &coingeckoResponse)

32 if err != nil {

33 return 0, fmt.Errorf("error unmarshalling response: %w",

ë err)

34 }

35

36 averagePrice := 0.0

37 for _, price := range coingeckoResponse.Prices {

38 averagePrice += price [1]

39 }

40 averagePrice /= float64(len(coingeckoResponse.Prices))

41

42 return averagePrice , nil

43 }

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

In order to improve error handling, it’s recommended to add a check for

the HTTP response status code after making the request. If the status

code does not indicate success (usually a 200 status code), the function

should return an error.

Here’s an example of how you could implement this:

Listing 17

1 resp , err := http.Get(url)

2 if err != nil {

3 return nil , err

4 }

5 if resp.StatusCode != http.StatusOK {

6 return nil , fmt.Errorf("unexpected HTTP status: %s", resp.

ë Status)

7 }

By checking the HTTP response status code, you can ensure that you only

proceed with the rest of the function when you have successfully received

the expected data from the server. This can help to prevent obscure

errors from occurring later in the function’s execution.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by checking HTTP response

status codes in the following commit ID:

• d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc.

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/stader-guardian/commit/d9288491ab6d0de57ff8d8b6cb6a0ee4361bd3dc

4.12 (HAL-12) LACK OF ERROR
HANDLING FOR NON-EXISTENT CHAINID
IN ConvertTimestampToSlotAndEpoch
FUNCTION - INFORMATIONAL (0.0)

Description:

In the provided ConvertTimestampToSlotAndEpoch function, there is an im-

plicit assumption that the chainId provided as a function argument always

exists within the genesisTime map. However, in cases where a chainId

that is not present in the genesisTime map is passed to the function, the

time.Unix() call would be made with a zero value, potentially leading to

unexpected results.

Code Location:

Listing 18: internal/utils.go

35 func ConvertTimestampToSlotAndEpoch(timestamp time.Time , chainId

ë uint) (uint64 , uint64) {

36 genesisTime := time.Unix(int64(genesisTime[chainId]), 0)

37 timeSinceGenesis := timestamp.Sub(genesisTime)

38 slotNumber := uint64(timeSinceGenesis.Seconds ()) /

ë SECONDS_PER_SLOT

39 epochNumber := slotNumber / SLOTS_PER_EPOCH

40

41 return slotNumber , epochNumber

42 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to add an explicit check for the existence of the chainId

within the genesisTime map before using its value. If the chainId does

not exist within the map, the function should return an error.

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged this issue.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

48

RECOMMENDATIONS
OVERVIEW

• The code should be modified to handle the case when the Coingecko

API returns an empty response. If the Prices array is empty, the

function should raise an exception or return a default value, rather

than proceeding with the calculation of the average. This will

prevent the NaN issue and avoid the setting of undesired prices on

the chain.

• Consider implementing a mechanism to cross-check prices from multi-

ple sources to ensure accuracy and reduce the risk of manipulation.

It’s also worth considering implementing sanity checks or limits on

price changes to prevent large, unexpected fluctuations.

• Storing private keys in the environment variables in plain text are

a significant security risk. It would be more secure to store them

encrypted and decrypt them only when needed. Alternatively, consider

using a secure secret management solution like AWS Secrets Manager

or Hashicorp's Vault.

• Running Docker containers as root provides a potential attack sur-

face. You should consider creating a dedicated, non-root user for

running the Docker containers. This user should have the least

possible privileges required to perform the necessary tasks.

• It is crucial to specify a timeout for HTTP requests to prevent the

server from hanging indefinitely. You can use the Client struct in

the net/http package to set a timeout for requests.

• Increasing test coverage and regularly running these tests is a

critical part of maintaining a robust codebase. Also, consider

using tools that provide test coverage metrics to ensure that the

tests cover a sufficient part of the code.

• Implement a check in the Golang script for the whenNotPaused condi-

tion in the smart contract. If the contract is paused, the script

should not attempt to make calls that require the contract to be

unpaused. This will prevent unnecessary errors and make the system

more robust.

49

RE
CO

MM
EN

DA
TI

ON
S

OV
ER

VI
EW

50

AUTOMATED TESTING

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped component. Among the tools used were staticcheck,

gosec, semgrep, unconvert, LGTM and Nancy. After Halborn verified all

the contracts and scoped structures in the repository and was able to

compile them correctly, these tools were leveraged on scoped structures.

With these tools, Halborn can statically verify security related issues

across the entire codebase.

Semgrep - Security Analysis Output Sample:

Listing 19: Rule Set

1 semgrep --config "p/dgryski.semgrep -go" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o dgryski.semgrep

2 semgrep --config "p/owasp -top -ten" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o owasp -top -ten.

ë semgrep

3 semgrep --config "p/r2c -security -audit" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o r2c -security -audit.

ë semgrep

4 semgrep --config "p/r2c -ci" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o r2c -ci.semgrep

5 semgrep --config "p/ci" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o ci.semgrep

6 semgrep --config "p/golang" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o golang.semgrep

7 semgrep --config "p/trailofbits" x --exclude='*_test.go' --

ë max -lines -per -finding 1000 --no -git -ignore -o trailofbits.semgrep

51

AU
TO

MA
TE

D
TE

ST
IN

G

Semgrep Results:

• No major issues found by Semgrep.

52

AU
TO

MA
TE

D
TE

ST
IN

G

Gosec - Security Analysis Output Sample:

• No major issues found by Gosec.

53

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	RECOMMENDATIONS OVERVIEW
	AUTOMATED TESTING
	Description
	Semgrep - Security Analysis Output Sample
	Semgrep Results
	Gosec - Security Analysis Output Sample

