
Stader Labs

ETHx – Phase 2
Smart Contract Security Assessment Report

Version: 2.2

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Malicious Node Operators Can Cause a DoS through DistributeRewards() And SettleFunds(),Locking User Funds . 6DoS In StakeUserETHToBeaconChain() Due To Forced ETH Transfer Through SelfDestruct 7Duplicate PoolIds Can Cause Loss Of Funds For Users . 8
StaderConfig Cannot Be Updated . 10
HasEnoughSDCollateral() Check Is Performed Only Once During Onboarding 11Submit Functions Are Susceptible To Front Running When Trusted Nodes Are Removed 12No Minimum Trusted Node Validation . 13Uninitialized WithdrawDelay . 14Operator Reward Address Modification Using Hot Wallet . 15Partial DoS Possible For User Withdrawals . 16Centralisation Risk Due To Extensive System Upgradability . 17Phantom Overflow In CalculateRewardShare() . 18Potential Incorrect ETH Distribution In ValidatorWithdrawalVault 19
BidIncrement Can Be Changed Using UpdateBidIncrement() Which Affects Ongoing Auctions . . . 20Centralisation Risk In MaxApproveSD() . 21
TrustedNode Cannot Update Incorrectly Submitted Oracle Details 22Miscellaneous General Comments . 23OperatorRewardsCollector Missing Call To OZ _disableInitializers 24Lack Of External Contract Existence Check On DelegateCall . 25
VaultProxy Does Not Follow Standard Proxy Pattern Usage . 26
Owner In VaultProxy Does Not Adhere To The Single Source Of Truth Principle 28Miscellaneous General Comments — Round 2 . 29

A Test Suite 30

B Vulnerability Severity Classification 32

1

ETHx – Phase 2 Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Stader Labs smart con-tracts (Phase 2). The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Stader Labs smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Stader Labs smart contracts.

Overview

ETHx staking is a liquid ETH staking protocol that is permissionless and non-custodial. It enables users to par-ticipate in proof-of-stake validation with amounts smaller than the 32 ETH validator requirement by stakingalongside other users.
The protocol is controlled by the Stader DAO which has a governance token called SD.
The validators are split between permissioned and permissionless operators, meaning anyone can elect to run anoperator for ETHx staking. Permissionless operators must stake SD tokens and offer an ETH deposit to disincen-tivise theft of accrued MEV fees. Permissioned operators are added by Stader and do not have to provide an ETHdeposit as a result. Earned fees are split between the users, operators and Stader DAO in a yet to be decidedmanner.
Users receive the ETHx token when staking. ETHx is a fungible ERC20 that can be used in the wider DeFi ecosystemto earn further yield.

Page | 2

ETHx – Phase 2 Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the ethx repository and were assessed at commit eb9140b.
Retesting activities targeted commit 141dcaa and lead to the identification of the following additional findings:
ETHX2-18 , ETHX2-19 , ETHX2-20 , ETHX2-21 , and ETHX2-22 .
Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying issues/vulnerabilities associated withthe business logic implementation of the contracts. This includes their internal interactions, intended function-ality and correct implementation with respect to the underlying functionality of the Ethereum Virtual Machine(for example, verifying correct storage/memory layout). Additionally, the manual review process focused on allknown Solidity anti-patterns and attack vectors. These include, but are not limited to, the following vectors:re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thorough,but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 22 issues during this assessment. Categorised by their severity:
• High: 3 issues.
• Medium: 6 issues.
• Low: 3 issues.
• Informational: 10 issues.

Page | 3

https://github.com/stader-labs/ethx
https://github.com/stader-labs/ethx/tree/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9
https://github.com/stader-labs/ethx/commit/141dcaa712dc28d33a2a7385b1c84d2e4eed6ac5
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

ETHx – Phase 2 Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Stader Labs smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status

ETHX2-01 Malicious Node Operators Can Cause a DoS through
DistributeRewards() And SettleFunds(), Locking User Funds High Resolved

ETHX2-02 DoS In StakeUserETHToBeaconChain() Due To Forced ETH TransferThrough SelfDestruct High Resolved

ETHX2-03 Duplicate PoolIds Can Cause Loss Of Funds For Users Medium Resolved

ETHX2-04 StaderConfig Cannot Be Updated Medium Resolved

ETHX2-05 HasEnoughSDCollateral() Check Is Performed Only Once During On-boarding Medium Closed

ETHX2-06 Submit Functions Are Susceptible To Front Running When TrustedNodes Are Removed Medium Closed

ETHX2-07 No Minimum Trusted Node Validation Medium Resolved

ETHX2-08 Uninitialized WithdrawDelay Medium Closed

ETHX2-09 Operator Reward Address Modification Using Hot Wallet Low Closed

ETHX2-10 Partial DoS Possible For User Withdrawals Low Resolved

ETHX2-11 Centralisation Risk Due To Extensive System Upgradability Informational Closed

ETHX2-12 Phantom Overflow In CalculateRewardShare() Informational Closed

ETHX2-13 Potential Incorrect ETH Distribution In ValidatorWithdrawalVault Informational Closed

ETHX2-14 BidIncrement Can Be Changed Using UpdateBidIncrement() Which Af-fects Ongoing Auctions Informational Closed

ETHX2-15 Centralisation Risk In MaxApproveSD() Informational Resolved

ETHX2-16 TrustedNode Cannot Update Incorrectly Submitted Oracle Details Informational Closed

ETHX2-17 Miscellaneous General Comments Informational Resolved

ETHX2-18 OperatorRewardsCollector Missing Call To OZ _disableInitializers High Resolved

ETHX2-19 Lack Of External Contract Existence Check On DelegateCall Low Closed

ETHX2-20 VaultProxy Does Not Follow Standard Proxy Pattern Usage Informational Closed

ETHX2-21 Owner In VaultProxy Does Not Adhere To The Single Source Of TruthPrinciple Informational Resolved

ETHX2-22 Miscellaneous General Comments — Round 2 Informational Closed

5

ETHx – Phase 2 Detailed Findings

ETHX2-
01

Malicious Node Operators Can Cause a DoS through DistributeRewards() And SettleFunds(),Locking User Funds
Asset ValidatorWithdrawalVault.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

During the onboarding process, node operators - irrespective of whether they are permissioned or permissionless -can define their unique operatorRewardAddress when invoking the onboardNodeOperator() function. Presently, thesystem only checks to ensure that the reward address does not equal to the zero address.
This current system, however, leaves room for abuse. A malicious node operator can, during onboarding, deliberatelyset their operatorRewardAddress to a contract address. When the distributeRewards() or settleFunds() functions
are triggered, the contract can cause a reversion at line [75] and line [100] respectively in ValidatorWithdrawalVault :
sendValue(getNodeRecipient(), operatorShare);

Moreover, node operators have can alter their operatorRewardAddress at will through the updateOperatorDetails()

function. This allows malicious operators to manipulate when to trigger a reversion in distributeRewards() and
settleFunds() functions.

Recommendations

The Pull over Push pattern could be used to ensure that user and protocol shares can be distributed even if the
operatorRewardAddress is assigned to a malicious contract.
One viable solution could involve maintaining a record of the nodeRefundBalance .

Resolution

Implemented pull payment over push. Rewards will be sent to the OperatorRewardsCollector , and will require the
operator to call the claim() function to withdraw the rewards to the operatorRewardsAddr .
The recommendation has been implemented in commit 141dcaa.

Page | 6

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
02

DoS In StakeUserETHToBeaconChain() Due To Forced ETH Transfer Through SelfDestruct

Asset PermissionlessPool.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

The function stakeUserETHToBeaconChain() incorporates an assert statement - assert(address(this).balance == 0) ,at its termination on line [155], to verify that all ETH sent from the pool manager has been transferred to the beaconchain. However, the calculation of ETH is dependent on the msg.value received from the pool manager, which makes
the assumption that the ETH balance in PermissionlessPool is zero prior to the function call.
While PermissionlessPool would typically revert in the fallback() function with UnsupportedOperation() if anyETH is transferred to the contract, there’s an unhandled case where ETH is forcibly sent to the contract through a self-destruct operation. This undermines the assumption that PermissionlessPool will retain no funds prior to invoking
stakeUserETHToBeaconChain() .
In a scenario where an attacker forcibly sends a small amount (1 wei) of ETH to PermissionlessPool via self destruct,
the function stakeUserETHToBeaconChain() would always revert due to the assert statement at its end.

Recommendations

The testing team recommends removing this assert statement.

Resolution

The recommendation has been implemented in commit 141dcaa.

Page | 7

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
03

Duplicate PoolIds Can Cause Loss Of Funds For Users

Asset VaultFactory.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Withdrawal vaults handle the distribution of rewards to users, node operators and protocol fee recipients. Due to theuse of CREATE2 opcode and contract architectural decisions, accidental or malicious administration can generate thesame withdrawal address over two pool registries with identical poolIds .
VaultFactory.deployWithdrawVault() and VaultFactory.computeWithdrawVaultAddress() use theOpenZeppelin Clones
Upgradeable contracts to manage the creation of newwithdrawal vaults. In turn these use CREATE2 with a salted valuethat relies on _poolId, _operatorId, _validatorCount . These values are entirely determined by the PoolRegistrycontracts, which means that salt hash collisions can occur, resulting in the same withdrawal address being calculated.If two users share the same withdrawal address across two different pool registry contracts, it is possible for the earlieruser to steal funds of the latter user.
Currently PermissionlessNodeRegistry and PermissionedNodeRegistry use the VaultFactory.deployWithdrawVault()whichwill revert if the same address is calculated twice (since CREATE2 reverts if an address has non-zero nonce, or has
extcodesize>0). However, PermissionlessPool.preDepositOnBeaconChain() uses VaultFactory.computeWithdrawVaultAddress()which will not be able to differentiate between whether vault is being calculated that matches a different pool with thesame poolId .

Recommendations

Instead of poolId , use registry address (msg.sender) and pass this information to the pool contracts as well, this will
protect against accidental poolId collisions from potentially causing loss of funds. It will not protect against malicious
action, but the current access control (ie. NODE_REGISTRY_CONTRACT) here will restrict the attack surface to adminis-
trative accounts only. An alternative is moving deployWithdrawVault (ie CREATE2) logic to the pool registry contracts(though this would defeat the purpose of the VaultFactory).

Resolution

The onboardNodeOperator() function in PermissionlessNodeRegistry and PermissionedNodeRegistry now validates
the poolId by matching it against the poolId of PermissionlessPool and permissionedPool respectively.
Since addNewPool() in PoolUtils validates that pools cannot be added with a duplicate poolId , the validation in
onboardNodeOperator() guarantees that operators cannot be onboarded in the registry contract if a duplicate poolIdexists.
Further, the protocol team has indicated that pools would not be onboarded without manual verification and furtheraudits decreasing the chance of conflicting IDs.

Page | 8

ETHx – Phase 2 Detailed Findings

The change has been implemented in commit 141dcaa.

Page | 9

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
04

StaderConfig Cannot Be Updated

Asset ETHx.sol, OperatorRewardsCollector.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

StaderConfig serves as a central contract that maintains all protocol settings and access control, crucial for the proto-
col’s regular operation. Every key contract within the codebase holds the current StaderConfig address as a reference
and provides a method for altering the StaderConfig address, namely updateStaderConfig() .
However, ETHx.sol and OperatorRewardsCollector.sol contracts lack a function to update the StaderConfig in caseof future changes to this address.

Recommendations

The testing team recommends adding the updateStaderConfig() function, similar to the setter function present in allother key contracts in the ETHx codebase.

Resolution

The recommendation has been implemented in commit 141dcaa.

Page | 10

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
05

HasEnoughSDCollateral() Check Is Performed Only Once During Onboarding

Asset SDCollateral.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

The validation of SD token quantity currently only happens during the onboarding of new validators. This processspecifically involves the call to addValidatorKeys() , which further invokes checkInputKeysCountAndCollateral() ,
ultimately calling hasEnoughSDCollateral() . However, this value is only contingent upon the price value during on-boarding, allowing users to exploit price volatility and potentially maintain fewer SD tokens than required.
This issue could adversely affect the security offered by SD tokens to users against fraudulent or negligent validators.There is no assurance that the market value of SD collaterals will suffice over the entire staking duration. A depreciationin the market value of SD collateral could alter the staker’s incentives, making malicious activities potentially moreprofitable.

Recommendations

To address this issue, the testing team recommends that stakers should cease accruing rewards until they increase theSD collateral amount to pass the hasEnoughSDCollateral() check.

Resolution

The development team closed the issue with the following comments.
When the min requirement of SD is not met, operators stop getting SD rewards. We believe it is a sufficient motivating factor
for operators to continue maintaining that threshold. In the future, we could direct their ETH commissions to meet the min
SD target. This is however not part of the scope for now.

Page | 11

ETHx – Phase 2 Detailed Findings

ETHX2-
06

Submit Functions Are Susceptible To Front Running When Trusted Nodes Are Removed

Asset StaderOracle.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

When a trusted StaderOracle node is removed using the removeTrustedNode() they should not be able to vote on
balances, withdrawals, or beaconStateRoots . However, since the current voting process allows for submissions if the
reporting block is >= to the current block.number with no delay period, it is possible for remoteTrustedNode() to be
front run with a call to (for instance) submitBalances() .
Since both transactions can happen in the same block, and submissions do not allow for delay, there is noway to protectagainst malicious node removal.

Recommendations

The testing team advises providing a delay before voting begins to ensure malicious entities can’t vote prior to theirown removal

Resolution

The development team closed the issue with the following comments.
We do not think this issue is applicable as only approved trusted nodes are allowed to join, trusted nodes also have to deposit
someUSDC as collateral which is done off-chain, and trusted nodes are changed in a time-spacedmanner to ensure backwards
compatibility

Page | 12

ETHx – Phase 2 Detailed Findings

ETHX2-
07

No Minimum Trusted Node Validation

Asset StaderOracle.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

When nodes submit information to StaderOracle , there is no validation of a minimum number of trustedNodeOnlyroles. Thus as new trusted nodes are being added to the system, an existing node can take advantage and vote for amalicious exchange rate. When early in the setup of StaderOracle , byzantine protection relying on the following canbe passed with even just 1 malicious vote;
if (

submissionCount == trustedNodesCount / 2 + 1 &&
_exchangeRate.reportingBlockNumber > exchangeRate.reportingBlockNumber

)

Recommendations

Testing team recommends validating if a set minimum trusted nodes has been reached before allowing voting to begin.

Resolution

A minimum of 5 trusted nodes is enforced before any oracle data submission.
The recommendation has been implemented in commit 141dcaa.

Page | 13

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
08

Uninitialized WithdrawDelay

Asset SDCollateral.sol

Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The withdrawDelay value is used in the function claimWithdraw() to calculate the waiting period before operators
are able to withdraw their SDCollateral tokens.
However withdrawDelay is uninitialized, so that prior to setWithdrawDelay() being called withdrawDelay will defaultto zero which results in operators being able to immediately claim their sd collateral tokens.

Recommendations

The testing team recommends initializing withdrawDelay to a reasonable default value in the initializer.

Resolution

The development team closed the issue with the following comments.
SD withdraw has been changed to immediate withdraw, rather than a two step process.

Page | 14

ETHx – Phase 2 Detailed Findings

ETHX2-
09

Operator Reward Address Modification Using Hot Wallet

Asset PermissionlessNodeRegistry.sol, PermissionedNodeRegistry.sol
Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

Onboarding a node operator involves passing the operatorRewardAddress as a parameter to the
onboardNodeOperator() function. Post-onboarding, the node operator has the capacity to change this address
at any time through the updateOperatorDetails() function.
In a typical setup, the operator account is a hot wallet controlled by node software, while the reward address is set toa more secure account such as a cold wallet or a contract wallet.
A security concern arises if the operator hot wallet is compromised. The attacker would then have the ability to alterthe reward address and potentially steal the funds allocated to that address.

Recommendations

The testing team recommends that only the reward address itself should have the permission to alter the rewardaddress.
This change can potentially introduce a tradeoff between security and availability - the risk of unintentionally settingthe reward address to an erroneous account increases. Therefore, it would be beneficial to incorporate a safe ownershiptransfer pattern. This pattern would require the new reward address to acknowledge the change before it is enacted,thereby minimising the risk of errors.

Resolution

The development team closed the issue with the following comments.
We will keep the same as its up to the Node Operators to maintain their security. Our user research indicates the same
preference.

Page | 15

ETHx – Phase 2 Detailed Findings

ETHX2-
10

Partial DoS Possible For User Withdrawals

Asset UserWithdrawalManager.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Users request withdrawals by calling UserWithdrawalManager.requestWithdraw() , however this function allowsa user to specify a different address as the owner . line [101] validates if the user has exceeded a
maxNonRedeemedUserRequestCount , by default this value is set to 1000 in StaderConfig . On line [107] this value isincremented for the owner , which means if the owner attempted to request a withdrawal for their own address thecheck on line [101] will revert with MaxLimitOnWIthdrawRequestCoutReached .
There is a a check on line [98] that validates the amount withdrawn with staderConfig.getMinWithdrawAmout ,however this is set to a default of 100. This means the minimum amount to cause a revert in
UserWithdrawalManager.requestWithdraw() is 100,000 wei worth of ETHx.
It is important to note that ETHx’s value will increase as ETH staking rewards accumulate, so the cost of the attack mayincrease marginally over the course of the protocol’s lifespan. Furthermore, it is important to note that the affecteduser cannot nominate a separate withdrawal address (effectively copying the technique used by the attacker) to with-draw to an address that has not exceeded the maxNonRedeemedUserRequestCount . The transaction will revert before
incrementing the address of the withdrawal address maxNonRedeemedUserRequestCount .
While requests can be removed, this process requires them to first be finalised at a max batch limit of 50 withdrawalsper transaction. Subsequently the user will need to claim the fund, which at certain gas prices may cost more than theyare receiving from the claim. Claiming is capped at 1 claim per transaction.

Recommendations

The testing team recommends setting healthier limits on per user withdrawal requests (ie increasing the cost of aminimumwithdrawal such that this attack is no longer feasible), or allow a user to quickly remove all pendingwithdrawalrequests.

Resolution

The protocol team has implemented the following:
1. Increased minWithdraw amount to 10**14

2. Fixed if condition to check for owner request count instead of msg.sender , therefore anyone can get aroundthis by directing withdrawals to a new wallet.
The change has been implemented in commit 141dcaa.

Page | 16

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
11

Centralisation Risk Due To Extensive System Upgradability

Asset StaderConfig.sol

Status Closed: See Resolution
Rating Informational

Description

StaderConfig is a centralised contract that is used for protocol governance and keeps track of all key values andcontracts in the system. All contract addresses can be modified as well as values which are critical to the normaloperation of the protocol.
The ADMIN role has the ability to change values in staderConfig as well as the staderConfig address values in all key
contracts in the system through the updateStaderConfig() function.
The protocol team has indicated that the ADMIN role will be a large multi-sig where Stader would hold one signaturewhile the rest will be prominent members of the Ethereum community.
However despite this, the extensive authority held by the ADMIN account, including potential fund misappropriationfrom users and operators, combined with the system’s extensive upgradability, may make this safeguard insufficient.This could potentially expose the system to catastrophic failure, should there be malevolent actors or a compromise inthe related security keys.

Recommendations

The testing team advises that essential updates, such as those related to critical contract address modifications and sys-tem upgrades, should only be implemented post-approval by the oracle DAO via an on-chain public voting mechanism.This would essentially form a large multi-signature contract with public voting.
Furthermore, we recommend implementing a mechanism to allow node operators to veto or rollback vault updatesthat pose a risk to the theft of funds.

Resolution

The development team closed the issue with the following comments.
Will migrate ADMIN power to a DAO vote mechanism in the future.

Page | 17

ETHx – Phase 2 Detailed Findings

ETHX2-
12

Phantom Overflow In CalculateRewardShare()

Asset PoolUtils.sol

Status Closed: See Resolution
Rating Informational

Description

A phantom overflow is when final calculation result would fit into the result data type, but an intermediate operationoverflows.
This can occur in calculateRewardShare() on line [258] if _totalRewards * usersETH is greater than MAX_UINT256.
Although this is unlikely to occur in practice due to the size of usersETH .

Recommendations

A potential solution is to divide before multiply which will result in the user receiving a larger share due to division, and
protocolShare and operatorShare being be rounded down.

Resolution

The development team closed the issue with the following comments.
These scenarios won’t be possible in practice. The current implementation is capable of handling very big numbers (max
uint128).

Page | 18

ETHx – Phase 2 Detailed Findings

ETHX2-
13

Potential Incorrect ETH Distribution In ValidatorWithdrawalVault

Asset ValidatorWithdrawalVault.sol

Status Closed: See Resolution
Rating Informational

Description

The issue relates to validatorWithdrawVault.sol , where two functions, distributeRewards() and settleFunds() ,handle the distribution of ETH held in the contract.
The function settleFunds() , which disburses ETH after the validator is withdrawn, accounts for both user-depositedand operator-deposited ETH. It first reimburses the users and operators, and then allocates the remaining funds asrewards.
The distributeRewards() function, responsible for periodic reward distribution, operates differently. It distributes thefull ETH balance held in the contract as rewards without factoring in the portions deposited by users and operators.
The problem arises when distributeRewards() is called post the validator’s withdrawal, while the complete ETH bal-
ance is retained within the ValidatorWithdrawalVault contract. This scenario results in an incorrect ETH distribution
as the distributeRewards() functionmisinterprets the total staked ETH balance as rewards, failing to return the sharesof users and operators first.
To prevent a bad actor from calling distributeRewards() when the validator has withdrawn, the function will revert
if totalRewards exceed staderConfig.getRewardsThreshold() .

Recommendations

It is critical to set REWARD_THRESHOLD to an amount that will be exceeded once the full amount of staked ETH is with-drawn to the vault contract. The protocol team has indicated that a value of 4-8 ETH will be used to ensure this con-dition is met even in the event of significant slashing. This value should be carefully monitored to ensure the accuracyof security assumptions.

Resolution

The development team closed the issue with the following comments.
We will be setting the rewardThreshold to 8 ETH at time of deployment.

Page | 19

ETHx – Phase 2 Detailed Findings

ETHX2-
14

BidIncrement Can Be Changed Using UpdateBidIncrement() Which Affects Ongoing Auctions

Asset Auction.sol

Status Closed: See Resolution
Rating Informational

Description

The bidIncrement is used to calculate the minimum amount a bid must be above the current bid for the bidder to
become the new highest bidder. This value can be updated anytime by the MANAGER using the updateBidIncrement()function.
However, bidIncrement used to calculate the minimum value depends on the current bidIncrement value rather than
the original value that was set when the lot was created during createLot() .

Recommendations

The testing team recommends saving the current bidIncrement value as part of the lot settings during createLot()so that if the bid increment value is changed it will not retroactively affect existing auctions and cause unexpectedreverts during bidding.

Resolution

The development team closed the issue with the following comments.
User can check the then current bidIncrement before placing any bid.

Page | 20

ETHx – Phase 2 Detailed Findings

ETHX2-
15

Centralisation Risk In MaxApproveSD()

Asset SDCollateral.sol

Status Resolved: See Resolution
Rating Informational

Description

The function maxApproveSD() in SDCollateral.sol approves any arbitrary address the control of uint256.max of
Stader tokens. This function can be called by the MANAGER role.
This is a centralisation risk if the MANAGER role is compromised, as the SD tokens held in this contract can be drained.

Recommendations

The testing team recommends limiting the addresses which can be approved using the maxApproveSD() , such as onlyto the Auction contract for the purposes of slashing.

Resolution

The recommendation has been implemented in commit 141dcaa.

Page | 21

https://github.com/stader-labs/ethx/tree/phase2

ETHx – Phase 2 Detailed Findings

ETHX2-
16

TrustedNode Cannot Update Incorrectly Submitted Oracle Details

Asset StaderOracle.sol

Status Closed: See Resolution
Rating Informational

Description

TrustedNode cannot update incorrectly submitted oracle details before consensus is completed, due to the followingcheck on line [578-580]:
if (nodeSubmissionKeys[_nodeSubmissionKey]) {

revert DuplicateSubmissionFromNode();
}

An address granted trustedNodeOnly is unable to correct mistakes. Double voting is not a problem in this case as theoriginal votes are overwritten, instead the risk is that incorrect votes cannot be corrected.

Recommendations

Testing team advises providing mechanisms for updating incorrect votes.

Resolution

The development team closed the issue with the following comments.
Oracle clients are expected to be proficient in their operations.

Page | 22

ETHx – Phase 2 Detailed Findings

ETHX2-
17

Miscellaneous General Comments

Asset contracts/*

Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. createLot() potentially has unexpected order of operationsWhen using shorthand addition, developers must
be cautious of Solidity compilers optimisation and expected order of operations. In the case of createLot() the
iteration to nextLot++ is done inside of an event loop. In Solidity, the event will fire prior to the increment ofthe nextLot id. This behaviour may be counter intuitive. This could lead to confusion when a developer or userreads the code / event, expecting the next ID to be something other than what it is.

2. Cannot change protocol fee independently of operator fee If staderConfig.onlyManagerRole() decides to up-date the protocol or operator fee of any pool, currently they will have to change both values which limits usabilityof those functions.
3. Ambiguous Role Name The role identified as OPERATOR , which is enforced through OnlyOperatorRole() , is de-signed to denote whitelisted EOAs/contracts that are under Stader’s control. Nevertheless, the current namingsystem may lead to ambiguity as it could be mistaken for Node Operators.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team closed the issue with the following comments.
Improved readability.

Page | 23

ETHx – Phase 2 Detailed Findings

ETHX2-
18

OperatorRewardsCollector Missing Call To OZ _disableInitializers

Asset OperatorRewardsCollector.sol

Status Resolved: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

The following passage can be found in the OpenZeppelin documentation for writing upgradable contracts.
Do not leave an implementation contract uninitialized. An uninitialized implementation contract can be
taken over by an attacker, which may impact the proxy. To prevent the implementation contract from being
used, you should invoke the _disableInitializers function in the constructor to automatically lock it when
it is deployed

/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {

_disableInitializers();
}

OperatorRewardsCollector is missing a constructor which calls _disableInitializers() .

Recommendations

Add a constructor which invokes _disableInitializers() as described in the OZ documentation.

Resolution

The recommendation has been implemented in commit 141dcaa.

Page | 24

https://github.com/stader-labs/ethx/pull/165

ETHx – Phase 2 Detailed Findings

ETHX2-
19

Lack Of External Contract Existence Check On DelegateCall

Asset VaultProxy.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The low-level functions call, delegatecall and staticcall return TRUE as their first return value if the account calledis non-existent or if extcodesize == 0 . Therefore account existence must be checked prior to making a low level call.
The implementation contracts for NodeELRewardVault and ValidatorWithdrawalVault is set
by the admin in StaderConfig using the functions updateNodeELRewardImplementation() and
updateValidatorWithdrawalVaultImplementation() respectively.
However there is no validation that the implementation contract has been set in StaderConfig . Prior
to the admin setting the implementation contracts, getValidatorWithdrawalVaultImplementation() and
getNodeELRewardVaultImplementation() will return address(0).
As there is the possibility of the StaderConfig changing in the future, there is risk that delegatecall could be performedbefore the implementation contracts are set.

Recommendations

Validate that vaultImplementation does not equal address(0) prior to performing delegatecall.

Resolution

The development team closed the issue with the following comments.
The issues have been acknowledged

Page | 25

ETHx – Phase 2 Detailed Findings

ETHX2-
20

VaultProxy Does Not Follow Standard Proxy Pattern Usage

Asset VaultProxy.sol

Status Closed: See Resolution
Rating Informational

Description

The VaultProxy contract is using a delegate forwarding call, a pattern often used when trying to avoid exceeding size
limits. Though upgradeable proxy contracts also use DELEGATECALL , strictly using a forwarding pattern isn’t recommendfor systems designed with upgradeability in mind. Proxy patterns have added security features which minimise the riskof compromises.
There are several drawbacks with the current structure that impact upgradeability:

1. The logic contract and implementation contract ideally should be separate. This makes changes to storage acrossdifferent versions clearer to follow for both developer and auditor. In the case of VaultProxy contract, it hassome storage allocation specific to that contract, which is inaccessible to the current implementation contract.These variables could be defined in the implementation contract (ie poolId, isInitialised, owner etc) at a later stage,or overwritten by other storage requirements of the implementation contract. This presents a significant risk ofstorage collisions occuring during subsequent upgrades.
2. Proxy upgrades rely on a third contract (StaderConfig), this pattern is typically associated with Beacon Proxycontracts. Beacon proxy contracts implement EIP-1967 for storing proxy/logic contract details into a specificslot. This is to prevent the possibility of a storage collision with the implementation address (in this case thethe staderConfig address which fetches the implementation contract address). In the case of VaultProxy it doesnot implement EIP-1967 which further increases the possibility of difficult to detect storage collisions due topotential quirks at compilation time.

Recommendations

The testing team advises the following changes:

1. Avoid splitting logic between the proxy and implementation contract, if administrative logic is required on theproxy level, consider using a transparent proxy with an OpenZeppelin ProxyAdmin contract to segregate proxyadmin logic and general user implementation logic.
2. Implement suitable Proxy Storage patterns to reduce risk of collision (or use a proxy pattern that already has thisfunctionality and is vetted to avoid collisions). Commonly used patterns include Transparent and UUPS.
3. Alternatively, if you would like to maintain upgradeability of contracts with a third party contract deciding theimplementation of all contracts, consider using the BeaconProxy pattern.
4. Future upgrades should be validated that they do not overwrite existing variables.

Page | 26

ETHx – Phase 2 Detailed Findings

Resolution

The development team closed the issue with the following comments.
The issues have been acknowledged

Page | 27

ETHx – Phase 2 Detailed Findings

ETHX2-
21

Owner In VaultProxy Does Not Adhere To The Single Source Of Truth Principle

Asset VaultProxy.sol

Status Resolved: See Resolution
Rating Informational

Description

When VaultProxy is initialised the owner is set to staderConfig.getAdmin() . StaderConfig is used as a centralisedcontract which serves as a single source of truth for the ETHx protocol.
However the owner in Vaultproxy can be updated independently using the updateOwner() function, this can acci-
dentally result in different owner addresses being set if StaderConfig changes in the future.

Recommendations

Modify the updateOwner() function to get the current admin by calling staderConfig.getAdmin() .

Resolution

The recommendation has been implemented in commit 46c0988.

Page | 28

https://github.com/stader-labs/ethx/commit/46c0988a7694f2d8c8ac804bccc7a703179b3704

ETHx – Phase 2 Detailed Findings

ETHX2-
22

Miscellaneous General Comments — Round 2

Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team in the second round of review (retesting),that do not have direct security implications:

1. OpenZeppelin upgrade files are not committed to the repository:The OpenZeppelin hardhat plugin recommends committing to source control the upgrade data for all but the devnetwork.
It is advised that you commit to source control the files for all networks except the development ones (you
may see them as .openzeppelin/unknown-*.json). (https://docs.openzeppelin.com/upgrades-plugins/1.
x/network-files#configuration-files-in-version-control)

The current repository’s .gitignore ignores the entire .openzeppelin folder and therefore makes it difficult forETHx contributors to consistently interact with and upgrade contracts on persistent chains. The OpenZeppelinplugin relies on this to allow maintainers to reuse an implementation contract with multiple proxy deployments.Consider following the documentation’s recommendations here.
2. OpenZeppelin deployment scripts do not wait for deployment transaction to be mined:Waiting on upgrades.deployProxy() returns the contract address but does not wait for the contract deploymentto be mined.

Consider the following excerpt from scripts/deploy/ETHx.ts

const ethXFactory = await ethers.getContractFactory('ETHX')
const ethX = await upgrades.deployProxy(ethXFactory, [owner.address, staderConfigAddr])
console.log('ethX Token deployed to: ', ethX.address)

According to the upgrades plugin documentation, this should be followed by a await ethX.deployed(); state-ment to ensure the contract actually exists on-chain.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team closed the issue with the following comments.
The issues have been acknowledged

Page | 29

https://docs.openzeppelin.com/upgrades-plugins/1.x/network-files#configuration-files-in-version-control
https://docs.openzeppelin.com/upgrades-plugins/1.x/network-files#configuration-files-in-version-control
https://docs.openzeppelin.com/upgrades-plugins/1.x/#hardhat-usage

ETHx – Phase 2 Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The Foundry framework was used to perform these tests and the output is given below.

Running 2 tests for test/PoolSelector.t.sol:PoolSelectorTests
[PASS] test_computePoolAllocationForDeposit() (gas: 1936172)
[PASS] test_initializePoolSelector() (gas: 22794)
Test result: ok. 2 passed; 0 failed; finished in 13.01ms

Running 4 tests for test/Penalty.t.sol:PenaltyTests
[PASS] test_constructor_Vuln() (gas: 22351)
[PASS] test_initialize() (gas: 35962)
[PASS] test_setAdditionalPenaltyAmount() (gas: 102231)
[PASS] test_setPenaltyOracleAddress() (gas: 94295)
Test result: ok. 4 passed; 0 failed; finished in 10.79ms

Running 6 tests for test/StaderStakePoolsManager.t.sol:StaderStakePoolsManagerTests
[PASS] test_completeDepositCyclePermissionless() (gas: 1962757)
[PASS] test_deposit() (gas: 287983)
[PASS] test_initialize() (gas: 17488)
[PASS] test_newPermissionlessValidator_Vuln() (gas: 1713316)
[PASS] test_validatorBatchDeposit() (gas: 1846064)
[PASS] test_validatorBatchDeposit_Vuln() (gas: 1623896)
Test result: ok. 6 passed; 0 failed; finished in 19.54ms

Running 3 tests for test/PermissionlessPool.t.sol:PermissionlessPoolTests
[PASS] test_initialize() (gas: 17511)
[PASS] test_setProtocolFeePercent() (gas: 136499)
[FAIL. Reason: Assertion violated] test_stakeUserETHToBeaconChain_vuln() (gas: 2125190)
Test result: FAILED. 2 passed; 1 failed; finished in 15.93ms

Running 4 tests for test/ETHx.t.sol:ETHxTests
[FAIL. Reason: Call did not revert as expected] test_cannotChangeStaderConfig_vuln() (gas: 3518227)
[PASS] test_initialize() (gas: 31035)
[PASS] test_mintAndBurn() (gas: 180301)
[PASS] test_pause() (gas: 104713)
Test result: FAILED. 3 passed; 1 failed; finished in 16.47ms

Running 11 tests for test/PermissionedNodeRegistry.t.sol:PermissionedNodeRegistryTests
[PASS] test_addValidatorKeys() (gas: 1304136)
[PASS] test_addValidatorKeys_Vuln() (gas: 370855)
[PASS] test_initialize() (gas: 17534)
[PASS] test_onboardNodeOperator() (gas: 475745)
[PASS] test_reportFrontRunValidator() (gas: 1579179)
[PASS] test_reportInvalidSignatureValidator() (gas: 1477421)
[PASS] test_updateBatchKeyDepositLimit() (gas: 64844)
[PASS] test_updateMaxKeyPerOperator() (gas: 65112)
[PASS] test_updateOperatorDetailsP() (gas: 459840)
[PASS] test_updateQueuedValidatorIndex() (gas: 87080)
[PASS] test_whitelistPermissionedNOs() (gas: 116079)
Test result: ok. 11 passed; 0 failed; finished in 16.92ms

Running 4 tests for test/SDCollateral.t.sol:SDCollateralTests
[PASS] test_conversionZeroAmounts() (gas: 219697)
[PASS] test_maxApproveRug_vuln() (gas: 215372)
[PASS] test_updatePoolThreshold() (gas: 111559)
[FAIL. Reason: withdrawDelay is uninitialized] test_withdrawDelayUninitialized_vuln() (gas: 14992)
Test result: FAILED. 3 passed; 1 failed; finished in 18.38ms

Running 5 tests for test/Auction.t.sol:AuctionTests
[PASS] test_addBid() (gas: 373118)
[PASS] test_createLot(uint256) (runs: 256, µ: 281083, ~: 282797)
[PASS] test_createZeroLot() (gas: 110562)
[FAIL. Reason: InSufficientBid()] test_increaseIncrement_vuln() (gas: 451293)
[PASS] test_initialize() (gas: 31175)

Page | 30

ETHx – Phase 2 Test Suite

Test result: FAILED. 4 passed; 1 failed; finished in 94.48ms

Running 2 tests for test/PermissionedPool.t.sol:PermissionedPoolTests
[PASS] test_initialize() (gas: 17533)
[PASS] test_setComissionFees() (gas: 133819)
Test result: ok. 2 passed; 0 failed; finished in 10.32ms

Running 8 tests for test/PermissionlessNodeRegistry.t.sol:PermissionlessNodeRegistryTests
[PASS] test_OnboardNodeOperator() (gas: 567103)
[PASS] test_addValidatorKeys() (gas: 1436510)
[PASS] test_addValidatorKeys_Vuln() (gas: 543719)
[PASS] test_changeSocializingPoolState() (gas: 494106)
[PASS] test_initialize() (gas: 17643)
[PASS] test_markValidatorReadyToDeposit() (gas: 1487923)
[PASS] test_updateNextQueuedValidatorIndex() (gas: 86645)
[PASS] test_updateOperatorDetails() (gas: 612860)
Test result: ok. 8 passed; 0 failed; finished in 13.03ms

Running 9 tests for test/StaderOracle.t.sol:StaderOracleTests
[PASS] test_addTrustedNode() (gas: 144565)
[FAIL. Reason: DuplicateSubmissionFromNode()] test_cannotUpdatePrice_vuln() (gas: 215743)
[FAIL. Reason: Price should not update: only 2 out of 4 have submitted] test_frontunRemoveTrustedNode_vuln() (gas: 461816)
[PASS] test_getLatestReportableBlock_Vuln() (gas: 22178)
[PASS] test_initialize() (gas: 25526)
[PASS] test_noMinTrustedNode_vuln() (gas: 295797)
[PASS] test_removeTrustedNode() (gas: 133364)
[PASS] test_setUpdateFrequency() (gas: 218198)
[PASS] test_submitBalances() (gas: 326187)
Test result: FAILED. 7 passed; 2 failed; finished in 15.99ms

Running 6 tests for test/VaultFactory.t.sol:VaultFactoryTests
[PASS] test_addNewPool() (gas: 106335)
[FAIL. Reason: users received less than their stake of 28 eth] test_distributeRewardsFrontrun_vuln() (gas: 2701077)
[FAIL. Reason: users received less than their stake of 28 eth] test_distributeRewardsHighRewardsThreshold_vuln() (gas: 2732727)
[PASS] test_initialize() (gas: 17473)
[FAIL. Reason: ETHTransferFailed(0x31256Cb3D8Cb35671F13b5B1680B2CF4FE55fC4F, 6290625000000000000)]

test_maliciousNodeOperatorDoS_vuln() (gas: 2502805)↪→
[PASS] test_settleFunds() (gas: 2507354)
Test result: FAILED. 3 passed; 3 failed; finished in 15.83ms

Running 2 tests for test/PoolUtils.t.sol:PoolUtilsTests
[FAIL. Reason: Arithmetic over/underflow Counterexample:

calldata=0x58dde8e10000000000000000a8a7ec10a6fcfc9a8c915debde04245a833ff172bc175c8b,
args=[4135431758475578407984678036024568137616785166630020144267]] test_calculateRewardShare_vuln(uint256) (runs: 103, µ:
77404, ~: 77404)

↪→
↪→
↪→

[PASS] test_initialize() (gas: 31177)
Test result: FAILED. 1 passed; 1 failed; finished in 34.57ms

Page | 31

ETHx – Phase 2 Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 32

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Malicious Node Operators Can Cause a DoS through DistributeRewards() And SettleFunds(), Locking User Funds
	DoS In StakeUserETHToBeaconChain() Due To Forced ETH Transfer Through SelfDestruct
	Duplicate PoolIds Can Cause Loss Of Funds For Users
	StaderConfig Cannot Be Updated
	HasEnoughSDCollateral() Check Is Performed Only Once During Onboarding
	Submit Functions Are Susceptible To Front Running When Trusted Nodes Are Removed
	No Minimum Trusted Node Validation
	Uninitialized WithdrawDelay
	Operator Reward Address Modification Using Hot Wallet
	Partial DoS Possible For User Withdrawals
	Centralisation Risk Due To Extensive System Upgradability
	Phantom Overflow In CalculateRewardShare()
	Potential Incorrect ETH Distribution In ValidatorWithdrawalVault
	BidIncrement Can Be Changed Using UpdateBidIncrement() Which Affects Ongoing Auctions
	Centralisation Risk In MaxApproveSD()
	TrustedNode Cannot Update Incorrectly Submitted Oracle Details
	Miscellaneous General Comments
	OperatorRewardsCollector Missing Call To OZ _disableInitializers
	Lack Of External Contract Existence Check On DelegateCall
	VaultProxy Does Not Follow Standard Proxy Pattern Usage
	Owner In VaultProxy Does Not Adhere To The Single Source Of Truth Principle
	Miscellaneous General Comments — Round 2

	Test Suite
	Vulnerability Severity Classification

