
Stader Labs

ETHx — Stader Permissioned CLI
Permissioned Operator Software

Security Assessment Report

Version: 2.0

July, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Lack Of Verification Of Deposit Signatures . 6
Web3Signer Does Not Use Authentication Over HTTP . 7
registerValidators() Does Not Check For Invalid Amount . 8Duplicate Packages In Stader Node & Stader Permissioned CLI 10Miscellaneous General Comments . 11

A Vulnerability Severity Classification 13

1

ETHx — Stader Permissioned CLI Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Stader Labs off-chainsoftware for permissionless node operators. The review focused solely on the security aspects of the codebase,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the codebase. Sigma Prime makes no judgements on, orprovides any security review, regarding the underlying business model or the individuals involved in the project.

Document Structure

The first section provides an overview of the functionality of the Stader Labs code contained within the scope ofthe security review. A summary followed by a detailed reviewof the discovered vulnerabilities is then givenwhichassigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved sta-tus and a recommendation. Additionally, findings which do not have direct security implications (but are poten-tially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Stader Labs smart contracts.

Overview

ETHx staking is a liquid ETH staking protocol that is permissionless and non-custodial. It enables users to par-ticipate in proof-of-stake validation with amounts smaller than the 32 ETH validator requirement by stakingalongside other users.
This review covers the additional features added to the stader-permissioned-cli repository from stader-node .
The core difference is in the stader-cli validator register command and Web3Signer interactions. Thiscommand prepares the pre-deposit signature and deposit signature for a permissioned Node Operator (NO).
A notable difference between the permissioned and permissionless setup is that permissionedNOs use a Web3SignerHTTP end point to request signatures for specific validtor keys. This differs to permissionless NOs who storethe validator keys locally.

Page | 2

ETHx — Stader Permissioned CLI Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the Stader Permissioned CLI which were assessed at commit4305991. Additionally, a separate review of the permissionless CLI was also performed prior to this engagementand results were shared in a separate report.
Note: native Go and Go Ethereum libraries and dependencies were excluded from the primary focus of this assessment.
As were the various execution and consensus layer software implementations.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the codebase. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Go runtime andEthereum protocol.
The manual code review focused on critical and sensitive features.
Testing methodology included:

• Identifying all areas consuming user supplied input;
• Manually attempting to exploit vulnerabilities through bypassing validations or manipulation of applicationbusiness logic;
• Using semi-automated assessment and fault injection tools as appropriate;
• Reviewing private key access permissions;
• Ensuring appropriate logging is enforced;
• Reviewing authentication (user/service accounts), authorisation (access control), and transport encryption(SSL/TLS implementation);

To support this review, the testing team used the following automated testing tools:
• golangci-lint meta-linter: https://golangci-lint.run/ Including linters

– errcheck: https://github.com/kisielk/errcheck
– staticcheck: https://staticcheck.io/
– gocritic: https://github.com/go-critic/go-critic
– gosec: https://github.com/securego/gosec
– revive: https://github.com/mgechev/revive
– govet: https://golang.org/cmd/vet

• semgrep: https://semgrep.dev/, using ruleset from https://github.com/dgryski/semgrep-go.git.
Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 5 issues during this assessment. Categorised by their severity:
• Low: 1 issue.
• Informational: 4 issues.

Page | 3

https://github.com/stader-labs/stader-permissioned-cli
https://github.com/stader-labs/stader-permissioned-cli/commit/4305991d5189b87647903bb34a3d9ccebb88108c
https://golangci-lint.run/
https://github.com/kisielk/errcheck
https://staticcheck.io/
https://github.com/go-critic/go-critic
https://github.com/securego/gosec
https://github.com/mgechev/revive
https://golang.org/cmd/vet
https://semgrep.dev/
https://github.com/dgryski/semgrep-go.git

ETHx — Stader Permissioned CLI Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Stader Labs permissionedCLI codebase. Each vulnerability has a severity classification which is determined from the likelihood and impactof each issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the software that do not constitute a known security risk are also describedin this section, and are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
SPC-01 Lack Of Verification Of Deposit Signatures Low Resolved

SPC-02 Web3Signer Does Not Use Authentication Over HTTP Informational Closed

SPC-03 registerValidators() Does Not Check For Invalid Amount Informational Resolved

SPC-04 Duplicate Packages In Stader Node & Stader Permissioned CLI Informational Closed

SPC-05 Miscellaneous General Comments Informational Closed

5

ETHx — Stader Permissioned CLI Detailed Findings

SPC-01 Lack Of Verification Of Deposit Signatures
Asset stader/api/validator/register.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There is no verification on the deposit signatures returned by the Web3Signer .
Signing on behalf of a validator is outsourced to the Web3Signer through an HTTP connection. There are no checks to
ensure the deposit signatures returned by the Web3Signer are valid signatures.
If the Web3Signer returns invalid signatures without an error then addValidatorKeys() will be called with an invalid
signature for _preDepositSignature or _depositSignature . If the deposit contract is called with an invalid signaturethe attached ETH will be unrecoverable.
Note if _preDepositSignature is invalid then transferETHOfDefectiveKeysToSSPM() is called and the remaining de-
posit is cancelled. Similarly, if _depositSignature is invalid then transferETHOfDefectiveKeysToSSPM() should becalled before the final deposit is made.

Recommendations

Verify the signatures returned by Web3Signer to ensure they are valid.

Resolution

The issue has been resolved by verifying signatures received from the Web3Signer before propagating the transactionson-chain. Commit b8aaf83 contains the changes.

Page | 6

https://github.com/stader-labs/stader-permissioned-cli/commit/b8aaf832f7c7cb6dc4683a1c972796af706cb430

ETHx — Stader Permissioned CLI Detailed Findings

SPC-02 Web3Signer Does Not Use Authentication Over HTTP
Asset shared/services/web3signer-manager.go

Status Closed: See Resolution
Rating Informational

Description

This issue is rated as informational as it was deemed out of scope, however it is an integral part of the reviewed components
and thus included in this report.

There is no authentication used over the HTTP connection between the Web3Signer and permissioned Node Operator(NO).
The Web3Signer is responsible for signing messages using the validator private key. Permissioned NOs must use the
validator key and therefore the Web3Signer to sign a deposit including the withdrawal address and amount.
For security reasons permissioned NOs must perform two deposits. First, a pre-deposit, which is a deposit includingthe required withdrawal credentials, using 1 ETH from the Stader on-chain pool. Second, the remaining deposit, whichis 31 ETH from the Stader on-chain pool. The second deposit is executed after a delay, to ensure the first deposit hasnot been front-run with malicious withdrawal credentials.
A lack of authentication over the Web3Signer may allow a malicious actor to call the endpoint /api/v1/eth2/sign/with a deposit that contains malicious withdrawal credentials. The attacker would be able to exploit Stader permis-sioned pool by front running the pre-deposit with their own deposit.
Withdrawal credentials are taken from the first deposit with a valid signature, which in this case would be the malicioususer’s deposit. Therefore, the malicious user will be able to claim the 1 ETH amount from the pre-deposit.

Recommendations

Authentication must be used for HTTP connections in the Web3Signer to prevent a malicious actor from signing de-posits. When using HTTP authentication, the HTTP messages must also be encrypted to prevent eavesdropping andreplay attacks, this may be achieved by using SSL / TLS.

Resolution

The issue is partially resolved in commit dfea738 which enforces HTTPS to be used rather than HTTP.
Authentication has not been added to the signer. The onus of access control and authentication of the Web3Signerfalls outside the scope of the Stader Permissioned CLI. It is left to Node Operators to add their own access control forthe Web3Signer .

Page | 7

https://github.com/stader-labs/stader-permissioned-cli/commit/dfea7382cbe0b5bd43b898e66b6bae5a03642b2b

ETHx — Stader Permissioned CLI Detailed Findings

SPC-03 registerValidators() Does Not Check For Invalid Amount
Asset stader-cli/validator/register.go

Status Resolved: See Resolution
Rating Informational

Description

There are insufficient checks in the function registerValidators() to cover all edge cases for the struct
CanRegisterValidatorsResponse . Specifically, the field InvalidAmount is not checked for in registerValidators() .
The following is an excerpt from registerValidators() .
canRegisterValidatorsResponse, err := staderClient.CanRegisterValidators(validatorPubKeyList)
if err != nil {

return err
}
if canRegisterValidatorsResponse.InsufficientBalance {

fmt.Printf("Account does not have enough balance!")
return nil

}
if canRegisterValidatorsResponse.DepositPaused {

fmt.Printf("Deposits are currently paused!")
return nil

}
if canRegisterValidatorsResponse.MaxValidatorLimitReached {

fmt.Printf("Max validator limit reached")
return nil

}
if canRegisterValidatorsResponse.OperatorNotRegistered {

fmt.Printf("Operator not registered")
return nil

}
if canRegisterValidatorsResponse.OperatorNotActive {

fmt.Printf("Operator not active")
return nil

}
if canRegisterValidatorsResponse.InputKeyLimitReached {

fmt.Printf("You cannot add more than %d keys at a time", canRegisterValidatorsResponse.InputKeyLimit)
return nil

}

Note this issue is raised as informational as the InvalidAmount error case should never arise, since the amounts arefixed for permissioned node operators.

Recommendations

To resolve this issue consider removing the field InvalidAmount from CanRegisterValidatorsResponse . Alternatively,
add a check for InvalidAmount amount in registerValidators() .

Page | 8

ETHx — Stader Permissioned CLI Detailed Findings

Resolution

InvalidAmount has been removed in commit c6ee5eb.

Page | 9

https://github.com/stader-labs/stader-permissioned-cli/commit/c6ee5eba690a7336ceda078fb2b7ae92aca4d375

ETHx — Stader Permissioned CLI Detailed Findings

SPC-04 Duplicate Packages In Stader Node & Stader Permissioned CLI
Asset stader-cli/*

Status Closed: See Resolution
Rating Informational

Description

Many packages are duplicated with identical code in the repositories stader-node and stader-permissioned-cli.
These include many of the files in the directories stader-lib and shared . Maintaining duplicate code bases addssignificant overheads and may result in bug patches being implemented in one repository but not the other.

Recommendations

One solution is to merge the two repositories and have separate binaries for the permissioned and permissionless CLItools.
An alternate solution is to extract the duplicate code and put them in their own repository which can be called on bythe two CLI tools.

Resolution

The development team intend to abstract out common libraries. However, this will not be achieved in the short termand is marked as future work.

Page | 10

https://github.com/stader-labs/stader-node
https://github.com/stader-labs/stader-permissioned-cli/

ETHx — Stader Permissioned CLI Detailed Findings

SPC-05 Miscellaneous General Comments
Asset stader-node/*

Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Use constants over hard coded values.
In stader/api/validator/register.go , line [173] and line [298] the parameter of poolType is hardcoded to 2 .
rewardWithdrawVault, err := node.ComputeWithdrawVaultAddress(vfc, 2, operatorId, newValidatorKey, nil)

In the same file on line [183], line [187], line [308] and line [312] use constants rather than hardcoded amounts forpre-deposit amount and deposit amount.
Consider replacing these values with constants.

2. Lack of check before indexing an array.
This should not be reachable unless Web3Signer is sending us malformed data.
In stader/api/validator/register.go , on line [81] if len(val) is less than two it will panic.
types.HexToValidatorPubkey(val[2:])

Similarly, in the same file on line [192], line [197], line [202], line [317], line [322] and line [327]. The same issue isalso present in a range of files.
Consider updating the function types.HexToValidatorPubkey() to take a string of arbitrary length and strip thefirst two characters if they are 0x . Then decode the remaining hex string.

3. Typos, spelling and grammar.
In stader-cli/node/commands.go on line [92] "Send ETH or SD, EthX tokens from the node account to an address."should say "Send ETH, SD or ETHx ...".

4. ETHx vs Ethx
There are multiple occurrences of ETHx and Ethx used in the code base. For consistency just use ETHx.

5. Return error messages should be updated.
The error messages for can-send-presigned-msg and send-presigned-msg should be changed from
exit validator .
In shared/services/stader/node.go

Page | 11

ETHx — Stader Permissioned CLI Detailed Findings

109 func (c *Client) CanSendPresignedMessage(validatorPubKey types.ValidatorPubkey) (api.CanSendPresignedMsgResponse, error) {
responseBytes, err := c.callAPI(fmt.Sprintf("node can-send-presigned-msg %s", validatorPubKey))

111 if err != nil {
return api.CanSendPresignedMsgResponse{}, fmt.Errorf("could not get exit validator status: %w", err)

113 }
var response api.CanSendPresignedMsgResponse

115 if err := json.Unmarshal(responseBytes, &response); err != nil {
return api.CanSendPresignedMsgResponse{}, fmt.Errorf("could not decode exit validator response: %w", err)

117 }
if response.Error != "" {

119 return api.CanSendPresignedMsgResponse{}, fmt.Errorf("could not get exit validator status: %s", response.Error)
}

121 return response, nil
}

123
func (c *Client) SendPresignedMessage(validatorPubKey types.ValidatorPubkey) (api.SendPresignedMsgResponse, error) {

125 responseBytes, err := c.callAPI(fmt.Sprintf("node send-presigned-msg %s", validatorPubKey))
if err != nil {

127 return api.SendPresignedMsgResponse{}, fmt.Errorf("could not get exit validator status: %w", err)
}

129 var response api.SendPresignedMsgResponse
if err := json.Unmarshal(responseBytes, &response); err != nil {

131 return api.SendPresignedMsgResponse{}, fmt.Errorf("could not decode exit validator response: %w", err)
}

133 if response.Error != "" {
return api.SendPresignedMsgResponse{}, fmt.Errorf("could not get exit validator status: %s", response.Error)

135 }
return response, nil

137 }

6. Dangling Comments
In shared/services/web3signer/web3signer-client/std-http-client.go line [163] there is a commented outpartially written function, which should be removed.
//func (c *StandardHttpClient)

Similarly, remove the following debug print lines.
% I know this is not got but it was having issues formatting otherwise

stader/api/validator/send-cl-rewards.go
61: //fmt.Println("getting validator eth balance")

stader/api/node/status.go
139: //fmt.Printf("Getting operator info...\n")

stader/api/validator/exit-validator.go
115: //fmt.Printf("hex version of pub key is %s\n", validatorPubKey.Hex())

shared/utils/stader/pre-signed-flows.go
92: //fmt.Printf("Debug: bulk presign check response is %s\n", string(body))
94: //fmt.Printf("res.body is %s\n", res)

shared/utils/eth2/eth2.go
32: //fmt.Printf("Validator status: %v", validatorStatus)

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate in commit 940320f.
Page | 12

https://github.com/stader-labs/stader-permissioned-cli/commit/940320fc46b8a70587d2fb02bf5b9111c8e83305

ETHx — Stader Permissioned CLI Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

Page | 13

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Lack Of Verification Of Deposit Signatures
	Web3Signer Does Not Use Authentication Over HTTP
	registerValidators() Does Not Check For Invalid Amount
	Duplicate Packages In Stader Node & Stader Permissioned CLI
	Miscellaneous General Comments

	Vulnerability Severity Classification

