
StaderLabs - ETHx
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: April 24th, 2023 - July 4th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 6

CONTACTS 7

1 EXECUTIVE OVERVIEW 8

1.1 INTRODUCTION 9

1.2 AUDIT SUMMARY 9

1.3 TEST APPROACH & METHODOLOGY 9

2 RISK METHODOLOGY 11

2.1 EXPLOITABILITY 12

2.2 IMPACT 13

2.3 SEVERITY COEFFICIENT 15

2.4 SCOPE 17

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 19

4 FINDINGS & TECH DETAILS 20

4.1 (HAL-01) DENIAL OF SERVICE IN PERMISSIONLESSPOOL THROUGH A

FORCED ETHER TRANSFER TO THE CONTRACT - MEDIUM(5.5) 22

Description 22

BVSS 25

Recommendation 25

Remediation Plan 25

4.2 (HAL-02) SLASHING OF A VALIDATOR CAN EXCEED THE ACTUAL PENALTY

DUE - MEDIUM(5.0) 26

Description 26

BVSS 28

Recommendation 28

Remediation Plan 28

1

4.3 (HAL-03) STADERORACLE CONTRACT CAN BE DOSED BY A MALICIOUS

TRUSTED NODE - MEDIUM(4.6) 30

Description 30

BVSS 32

Recommendation 32

Remediation Plan 32

4.4 (HAL-04) WRONG CHECK IN USERWITHDRAWALMANAGER.REQUESTWITHDRAW

FUNCTION - LOW(3.7) 33

Description 33

Proof of Concept 35

BVSS 35

Recommendation 36

Remediation Plan 36

4.5 (HAL-05) MISMANAGEMENT OF VALIDATOR STATUS LEADING TO POTENTIAL

BLOCKING OF WITHDRAWALS - LOW(3.7) 37

Description 37

Code Location 37

BVSS 37

Recommendation 38

Remediation Plan 38

4.6 (HAL-06) ABI.ENCODEPACKED() SHOULD NOT BE USED WITH DYNAMIC

TYPES WHEN PASSING THE RESULT TO A HASH FUNCTION SUCH AS KEC-

CAK256() - LOW(2.3) 39

Description 39

Code Location 39

BVSS 41

Recommendation 41

2

Remediation Plan 41

4.7 (HAL-07) COMPUTEWITHDRAWVAULTADDRESS AND COMPUTENODEELREWARD-

VAULTADDRESS MAY RETURN INCORRECT ADDRESSES - LOW(3.7) 42

Description 42

BVSS 44

Recommendation 44

Remediation Plan 44

4.8 (HAL-08) VAULTPROXY IS SUBJECT TO STORAGE COLLISIONS - LOW(3.7)

45

Description 45

BVSS 46

Recommendation 46

Remediation Plan 47

4.9 (HAL-09) CHAINLINK’S LATESTROUNDDATA MIGHT RETURN STALE OR IN-

CORRECT RESULTS - INFORMATIONAL(0.0) 48

Description 48

BVSS 49

Recommendation 49

Remediation Plan 50

4.10 (HAL-10) FLOATING PRAGMA - INFORMATIONAL(0.0) 51

Description 51

Code Location 51

BVSS 52

Recommendation 53

Remediation Plan 53

3

4.11 (HAL-11) LACK OF ENFORCEMENT ON MINIMUM NUMBER OF TRUSTED NODES -

INFORMATIONAL(0.0) 54

Description 54

Code Location 54

BVSS 55

Recommendation 55

Remediation Plan 55

4.12 (HAL-12) TYPO ON THE EVENT - INFORMATIONAL(0.0) 56

Description 56

Code Location 56

BVSS 56

Recommendation 56

Remediation Plan 57

4.13 (HAL-13) LOOP OPTIMIZATION - INFORMATIONAL(0.0) 58

Description 58

Code Location 58

BVSS 58

Recommendation 58

Remediation Plan 59

4.14 (HAL-14) MISSING/INCOMPLETE NATSPEC COMMENTS - INFORMA-

TIONAL(0.0) 60

Description 60

Code Location 60

BVSS 60

Recommendation 60

Remediation Plan 60

5 RECOMMENDATIONS OVERVIEW 61

4

6 AUTOMATED TESTING 63

6.1 STATIC ANALYSIS REPORT 64

Description 64

Slither results 64

6.2 AUTOMATED SECURITY SCAN 71

Description 71

MythX results 71

5

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 04/24/2023 Roberto Reigada

0.2 Document Updates 05/12/2023 Roberto Reigada

0.3 Draft Review 05/13/2023 Gokberk Gulgun

0.4 Draft Review 05/15/2023 Gabi Urrutia

1.0 Remediation Plan 05/30/2023 Roberto Reigada

1.1 Remediation Plan Review 05/30/2023 Gokberk Gulgun

1.2 Remediation Plan Review 06/01/2023 Gabi Urrutia

2.0 Document Updates 06/27/2023 Roberto Reigada

2.1 Document Updates 06/28/2023 Gokberk Gulgun

2.2 Document Updates Review 06/28/2023 Gokberk Gulgun

2.3 Document Updates Review 06/29/2023 Gabi Urrutia

3.0 Remediation Plan 06/30/2023 Roberto Reigada

3.1 Remediation Plan Review 07/04/2023 Gokberk Gulgun

3.2 Remediation Plan Review 07/04/2023 Gabi Urrutia

6

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

7

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com
mailto:Roberto.Reigada@halborn.com

8

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

StaderLabs engaged Halborn to conduct a security audit on their smart

contracts beginning on April 24th, 2023 and ending on May 12th, 2023.

The security assessment was scoped to the smart contracts provided in the

GitHub repository stader-labs/ethx.

1.2 AUDIT SUMMARY

The team at Halborn was provided three weeks for the engagement and as-

signed two full-time security engineers to audit the security of the smart

contracts. The security engineers are blockchain and smart-contract se-

curity experts with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were mostly

addressed by the StaderLabs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/ethx/tree/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions. (solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing by custom scripts.

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment. (Foundry)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

13

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

15

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

16

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

1. IN-SCOPE TREE & COMMIT :

The security assessment was scoped to the following smart contracts:

• Auction.sol

• ETHx.sol

• NodeELRewardVault.sol

• Penalty.sol

• PermissionedNodeRegistry.sol

• PermissionedPool.sol

• PermissionlessNodeRegistry.sol

• PermissionlessPool.sol

• PoolSelector.sol

• PoolUtils.sol

• SDCollateral.sol

• SocializingPool.sol

• StaderConfig.sol

• StaderInsuranceFund.sol

• StaderOracle.sol

• StaderStakePoolsManager.sol

• UserWithdrawalManager.sol

• ValidatorWithdrawalVault.sol

• VaultFactory.sol

• UtilLib.sol

Commit ID #1:

• eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9

Commit ID #2:

• 4e63182f3dc6ab6572a2ab2c3cfc183f81f1507d

17

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/ethx/tree/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9
https://github.com/stader-labs/ethx/commit/4e63182f3dc6ab6572a2ab2c3cfc183f81f1507d

Commit ID #3:

• 21d516c32a0dd8742a97e4ec0689f08df706fa54

2. REMEDIATION & COMMIT :

Commit ID #1:

• 9c245db775127c29b18fa106145e5ccd68e7faa0

18

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/ethx/commit/21d516c32a0dd8742a97e4ec0689f08df706fa54
https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 3 5 6

19

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

DENIAL OF SERVICE IN
PERMISSIONLESSPOOL THROUGH A FORCED

ETHER TRANSFER TO THE CONTRACT
Medium (5.5) SOLVED - 05/30/2023

SLASHING OF A VALIDATOR CAN EXCEED
THE ACTUAL PENALTY DUE

Medium (5.0)
PARTIALLY SOLVED -

06/30/2023

STADERORACLE CONTRACT CAN BE DOSED
BY A MALICIOUS TRUSTED NODE

Medium (4.6) SOLVED - 05/30/2023

WRONG CHECK IN
USERWITHDRAWALMANAGER.REQUESTWITHDRAW

FUNCTION
Low (3.7) SOLVED - 05/30/2023

MISMANAGEMENT OF VALIDATOR STATUS
LEADING TO POTENTIAL BLOCKING OF

WITHDRAWALS
Low (3.7) SOLVED - 05/30/2023

ABI.ENCODEPACKED() SHOULD NOT BE
USED WITH DYNAMIC TYPES WHEN
PASSING THE RESULT TO A HASH
FUNCTION SUCH AS KECCAK256()

Low (2.3) SOLVED - 05/30/2023

COMPUTEWITHDRAWVAULTADDRESS AND
COMPUTENODEELREWARDVAULTADDRESS MAY

RETURN INCORRECT ADDRESSES
Low (3.7) SOLVED - 06/27/2023

VAULTPROXY IS SUBJECT TO STORAGE
COLLISIONS

Low (3.7) SOLVED - 06/30/2023

CHAINLINK’S LATESTROUNDDATA MIGHT
RETURN STALE OR INCORRECT RESULTS

Informational
(0.0)

ACKNOWLEDGED

FLOATING PRAGMA
Informational

(0.0)
SOLVED - 05/30/2023

LACK OF ENFORCEMENT ON MINIMUM
NUMBER OF TRUSTED NODES

Informational
(0.0)

SOLVED - 05/30/2023

TYPO ON THE EVENT
Informational

(0.0)
SOLVED - 05/30/2023

LOOP OPTIMIZATION
Informational

(0.0)
SOLVED - 05/30/2023

MISSING/INCOMPLETE NATSPEC COMMENTS
Informational

(0.0)
ACKNOWLEDGED

20

EX
EC

UT
IV

E
OV

ER
VI

EW

21

FINDINGS & TECH
DETAILS

4.1 (HAL-01) DENIAL OF SERVICE IN
PERMISSIONLESSPOOL THROUGH A FORCED
ETHER TRANSFER TO THE CONTRACT -
MEDIUM (5.5)

Description:

In the PermissionlessPool contract, the function stakeUserETHToBeaconChain

() receives Ether from the pool manager and then deposits it on the

beacon chain:

Listing 1: PermissionlessPool.sol (Line 155)

125 /**

126 * @notice receives eth from pool manager to deposit for

ë validators on beacon chain

127 * @dev deposit validator taking care of pool capacity

128 */

129 function stakeUserETHToBeaconChain () external payable override

ë nonReentrant {

130 UtilLib.onlyStaderContract(msg.sender , staderConfig ,

ë staderConfig.STAKE_POOL_MANAGER ());

131 uint256 requiredValidators = msg.value / (staderConfig.

ë getFullDepositSize () - DEPOSIT_NODE_BOND);

132 address nodeRegistryAddress = staderConfig.

ë getPermissionlessNodeRegistry ();

133 IPermissionlessNodeRegistry(nodeRegistryAddress).

ë transferCollateralToPool(

134 requiredValidators * DEPOSIT_NODE_BOND

135);

136

137 address vaultFactoryAddress = staderConfig.getVaultFactory ();

138 address ethDepositContract = staderConfig.

ë getETHDepositContract ();

139 uint256 depositQueueStartIndex = IPermissionlessNodeRegistry(

ë nodeRegistryAddress).nextQueuedValidatorIndex ();

140 for (uint256 i = depositQueueStartIndex; i <

ë requiredValidators + depositQueueStartIndex; i++) {

141 uint256 validatorId = IPermissionlessNodeRegistry(

ë nodeRegistryAddress).queuedValidators(i);

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

142 fullDepositOnBeaconChain(

143 nodeRegistryAddress ,

144 vaultFactoryAddress ,

145 ethDepositContract ,

146 validatorId ,

147 staderConfig.getFullDepositSize ()

148);

149 }

150 IPermissionlessNodeRegistry(nodeRegistryAddress).

ë updateNextQueuedValidatorIndex(

151 depositQueueStartIndex + requiredValidators

152);

153 IPermissionlessNodeRegistry(nodeRegistryAddress).

ë increaseTotalActiveValidatorCount(requiredValidators);

154 // balance must be 0 at this point

155 assert(address(this).balance == 0);

156 }

The assert statement is used to check that a certain condition is true,

and if it is not, it will cause the contract to revert. In this case, the

condition being checked is whether the balance of the contract is equal to

0, once the core logic of the stakeUserETHToBeaconChain() was executed.

However, this asserts statement does not consider that the contract can

receive Ether through, for example, a self-destruct transfer.

Based on this, a malicious user could:

1. Deploy the following contract:

Listing 2: Attack.sol (Lines 42,47)

1 contract Attack {

2 address PermissionlessPool;

3

4 constructor(address _permissionlessPool) {

5 PermissionlessPool = _permissionlessPool;

6 }

7

8 function attack () public payable {

9 address payable addr = payable(address(PermissionlessPool)

ë);

10 selfdestruct(addr);

11 }

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

12 }

2. Call the attack() function passing to it just 1 Wei as msg.value.

3. The contract would self-destruct, forcing the transfer of 1 Wei to

the PermissionlessPool contract.

4. Any future calls to stakeUserETHToBeaconChain() would revert to that

1 Wei would remain in the smart contract.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:M/AX:L/C:N/I:H/A:C/D:M/Y:N/R:P/S:C (5.5)

Recommendation:

It is recommended to remove the assert(address(this).balance == 0) from

the stakeUserETHToBeaconChain() function.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by removing the assert

condition in the following commit ID:

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.2 (HAL-02) SLASHING OF A
VALIDATOR CAN EXCEED THE ACTUAL
PENALTY DUE - MEDIUM (5.0)

Description:

The key problem is present in the settleFunds() function in the

ValidatorWithdrawalVault contract, where the penaltyAmount is calculated

and compared with operatorShare. If operatorShare is less than

penaltyAmount, the function slashValidatorSD is called to make up for

the deficit in SDCollateral:

Listing 3: ValidatorWithdrawalVault.sol (Lines 66-69)

54 function settleFunds () external override {

55 uint8 poolId = VaultProxy(payable(address(this))).poolId ();

56 uint256 validatorId = VaultProxy(payable(address(this))).id();

57 IStaderConfig staderConfig = VaultProxy(payable(address(this))

ë).staderConfig ();

58 address nodeRegistry = IPoolUtils(staderConfig.getPoolUtils ())

ë .getNodeRegistry(poolId);

59 if (msg.sender != nodeRegistry) {

60 revert CallerNotNodeRegistryContract ();

61 }

62 (uint256 userSharePrelim , uint256 operatorShare , uint256

ë protocolShare) = calculateValidatorWithdrawalShare ();

63

64 uint256 penaltyAmount = getUpdatedPenaltyAmount(poolId ,

ë validatorId , staderConfig);

65

66 if (operatorShare < penaltyAmount) {

67 ISDCollateral(staderConfig.getSDCollateral ()).

ë slashValidatorSD(validatorId , poolId);

68 penaltyAmount = operatorShare;

69 }

70

71 uint256 userShare = userSharePrelim + penaltyAmount;

72 operatorShare = operatorShare - penaltyAmount;

73

74 // Final settlement

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

75 vaultSettleStatus = true;

76 IPenalty(staderConfig.getPenaltyContract ()).

ë markValidatorSettled(poolId , validatorId);

77 IStaderStakePoolManager(staderConfig.getStakePoolManager ()).

ë receiveWithdrawVaultUserShare{value: userShare }();

78 UtilLib.sendValue(payable(staderConfig.getStaderTreasury ()),

ë protocolShare);

79 IOperatorRewardsCollector(staderConfig.

ë getOperatorRewardsCollector ()).depositFor{value: operatorShare }(

80 getOperatorAddress(poolId , validatorId , staderConfig)

81);

82 emit SettledFunds(userShare , operatorShare , protocolShare);

83 }

The main concern is the implementation of the slashValidatorSD() func-

tion‘:

Listing 4: SDCollateral.sol (Lines 80,89)

72 /// @notice slashes one validator equi. SD amount

73 /// @dev callable only by respective withdrawVaults

74 /// @param _validatorId validator SD collateral to slash

75 function slashValidatorSD(uint256 _validatorId , uint8 _poolId)

ë external override nonReentrant {

76 address operator = UtilLib.getOperatorForValidSender(_poolId ,

ë _validatorId , msg.sender , staderConfig);

77 isPoolThresholdValid(_poolId);

78 PoolThresholdInfo storage poolThreshold =

ë poolThresholdbyPoolId[_poolId];

79 uint256 sdToSlash = convertETHToSD(poolThreshold.minThreshold)

ë ;

80 slashSD(operator , sdToSlash);

81 }

82

83 /// @notice used to slash operator SD , in case of operator default

84 /// @dev do provide SD approval to auction contract using `

ë maxApproveSD ()`

85 /// @param _operator which operator SD collateral to slash

86 /// @param _sdToSlash amount of SD to slash

87 function slashSD(address _operator , uint256 _sdToSlash) internal {

88 uint256 sdBalance = operatorSDBalance[_operator];

89 uint256 sdSlashed = Math.min(_sdToSlash , sdBalance);

90 if (sdSlashed == 0) {

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

91 return;

92 }

93 operatorSDBalance[_operator] -= sdSlashed;

94 IAuction(staderConfig.getAuctionContract ()).createLot(

ë sdSlashed);

95 emit SDSlashed(_operator , staderConfig.getAuctionContract (),

ë sdSlashed);

96 }

It calculates sdToSlash as the minimum threshold of the pool

(poolThreshold.minThreshold) rather than the actual deficit between

operatorShare and penaltyAmount. The implementation of slashSD() then

reduces the operator’s SD balance by the minimum of sdToSlash and the

operator’s SD balance. This could result in slashing more SD tokens than

required, in particular when the difference between operatorShare and

penaltyAmount is smaller than poolThreshold.minThreshold.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:M/Y:N/R:N/S:U (5.0)

Recommendation:

It is recommended to pass the actual deficit between operatorShare and

penaltyAmount to the slashValidatorSD() function and compare it with

poolThreshold.minThreshold using Math.min. This change would ensure that

the amount of SD tokens slashed accurately reflects the actual penalty,

protecting validators from unnecessary losses.

Remediation Plan:

PARTIALLY SOLVED: The team at Stader has recognized the concern high-

lighted. They confirm that this is an expected conduct of the system.

In instances where the penalty surpasses operatorShare, an amount of SD

equivalent to 0.4ETH is deducted. This procedure has been adequately

communicated to all Node Operators.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://blog.staderlabs.com/ethx-oracle-update-tech-explainer-73e8ba7c2271

It is also important to note that such a penalty does not have an impact

on the funds staked by users.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.3 (HAL-03) STADERORACLE CONTRACT
CAN BE DOSED BY A MALICIOUS TRUSTED
NODE - MEDIUM (4.6)

Description:

The StaderOracle contract implements the submitSDPrice() function:

Listing 5: StaderOracle.sol (Lines 244-255)

224 function submitSDPrice(SDPriceData calldata _sdPriceData) external

ë override trustedNodeOnly {

225 if (_sdPriceData.reportingBlockNumber >= block.number) {

226 revert ReportingFutureBlockData ();

227 }

228 if (_sdPriceData.reportingBlockNumber % updateFrequencyMap[

ë SD_PRICE_UF] > 0) {

229 revert InvalidReportingBlock ();

230 }

231 if (_sdPriceData.reportingBlockNumber <=

ë lastReportedSDPriceData.reportingBlockNumber) {

232 revert ReportingPreviousCycleData ();

233 }

234

235 // Get submission keys

236 bytes32 nodeSubmissionKey = keccak256(abi.encodePacked(msg.

ë sender , _sdPriceData.reportingBlockNumber));

237 bytes32 submissionCountKey = keccak256(abi.encodePacked(

ë _sdPriceData.reportingBlockNumber));

238 uint8 submissionCount = attestSubmission(nodeSubmissionKey ,

ë submissionCountKey);

239 insertSDPrice(_sdPriceData.sdPriceInETH);

240 // Emit SD Price submitted event

241 emit SDPriceSubmitted(msg.sender , _sdPriceData.sdPriceInETH ,

ë _sdPriceData.reportingBlockNumber , block.number);

242

243 // price can be derived once more than 66% percent oracles

ë have submitted price

244 if ((submissionCount == (2 * trustedNodesCount) / 3 + 1)) {

245 lastReportedSDPriceData = _sdPriceData;

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

246 lastReportedSDPriceData.sdPriceInETH = getMedianValue(

ë sdPrices);

247 uint256 len = sdPrices.length;

248 while (len > 0) {

249 sdPrices.pop();

250 len --;

251 }

252

253 // Emit SD Price updated event

254 emit SDPriceUpdated(_sdPriceData.sdPriceInETH ,

ë _sdPriceData.reportingBlockNumber , block.number);

255 }

256 }

Once the 66% of the trusted nodes have submitted the price, the median

value is calculated and then the total length of the sdPrices array is

iterated in order to remove all its elements.

Firstly, this is highly inefficient, as the delete keyword could be used

here instead.

Secondly, a malicious trusted node could perform the following exploit:

1. 2 trusted nodes are added to the StaderOracle contract by a manager.

2. The manager calls StaderOracle.setSDPriceUpdateFrequency() and sets

it to 1.

3. TrustedNode1 which is a malicious-trusted node, calls 80000 times

the submitSDPrice() function as shown in the code snippet below:

Listing 6: Malicious trusted node calls (Line 9)

1 vm.startPrank(trustedNode1);

2 SDPriceData memory _sdPriceData;

3 uint256 txAmount = 80000;

4 for(uint256 i; i < txAmount; ++i){

5 _sdPriceData = SDPriceData ({

6 reportingBlockNumber: block.number - (txAmount - i),

7 sdPriceInETH: 1 ether

8 });

9 contract_StaderOracle.submitSDPrice(_sdPriceData);

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

10 }

11 vm.stopPrank ();

4. TrustedNode2 now calls submitSDPrice() but the call reverts as the

block gas limit is reached:

BVSS:

AO:A/AC:H/AX:L/C:N/I:N/A:C/D:M/Y:N/R:N/S:C (4.6)

Recommendation:

It is recommended to use delete to delete all the elements of an array

in the StaderOracle.submitSDPrice() function. This would reduce the gas

costs greatly and would make this attack described 3 times pricier. A

malicious trusted node would require more than 150000 transactions in

order to perform this exploit.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue by using the delete keyword

to delete all the elements of the array. The issue was addressed in the

following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.4 (HAL-04) WRONG CHECK IN
USERWITHDRAWALMANAGER.REQUESTWITHDRAW
FUNCTION - LOW (3.7)

Description:

The UserWithdrawalManager contract implements the requestWithdraw() func-

tion:

Listing 7: UserWithdrawalManager.sol (Lines 101,102,103,107)

95 /**

96 * @notice put a withdrawal request

97 * @param _ethXAmount amount of ethX shares to withdraw

98 * @param _owner owner of withdraw request to redeem

99 */

100 function requestWithdraw(uint256 _ethXAmount , address _owner)

ë external override whenNotPaused returns (uint256) {

101 if (_owner == address (0)) revert ZeroAddressReceived ();

102 uint256 assets = IStaderStakePoolManager(staderConfig.

ë getStakePoolManager ()).previewWithdraw(_ethXAmount);

103 if (assets < staderConfig.getMinWithdrawAmount () || assets >

ë staderConfig.getMaxWithdrawAmount ()) {

104 revert InvalidWithdrawAmount ();

105 }

106 if (requestIdsByUserAddress[msg.sender]. length + 1 >

ë maxNonRedeemedUserRequestCount) {

107 revert MaxLimitOnWithdrawRequestCountReached ();

108 }

109 IERC20Upgradeable(staderConfig.getETHxToken ()).

ë safeTransferFrom(msg.sender , (address(this)), _ethXAmount);

110 ethRequestedForWithdraw += assets;

111 userWithdrawRequests[nextRequestId] = UserWithdrawInfo(payable

ë (_owner), _ethXAmount , assets , 0, block.number);

112 requestIdsByUserAddress[_owner].push(nextRequestId);

113 emit WithdrawRequestReceived(msg.sender , _owner , nextRequestId

ë , _ethXAmount , assets);

114 nextRequestId ++;

115 return nextRequestId - 1;

116 }

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

This function checks that msg.sender does not have too many requests not

redeemed yet. Although, msg.sender can request a withdrawal on behalf

of other user; hence, this check should be done in the _owner parameter,

not msg.sender as shown below:

Listing 8: UserWithdrawalManager.sol (Line 1)

1 if (requestIdsByUserAddress[_owner]. length + 1 >

ë maxNonRedeemedUserRequestCount) {

2 revert MaxLimitOnWithdrawRequestCountReached ();

3 }

With the current implementation, a malicious user could perform multiple

small requestWithdraw() calls in order to DOS the claims of a user:

Listing 9: UserWithdrawalManager.sol (Line 175)

162 function claim(uint256 _requestId) external override nonReentrant

ë {

163 if (_requestId >= nextRequestIdToFinalize) {

164 revert requestIdNotFinalized(_requestId);

165 }

166 UserWithdrawInfo memory userRequest = userWithdrawRequests[

ë _requestId];

167 if (msg.sender != userRequest.owner) {

168 revert CallerNotAuthorizedToRedeem ();

169 }

170 // below is a default entry as no userRequest will be found

ë for a redeemed request.

171 if (userRequest.ethExpected == 0) {

172 revert RequestAlreadyRedeemed(_requestId);

173 }

174 uint256 etherToTransfer = userRequest.ethFinalized;

175 deleteRequestId(_requestId , userRequest.owner);

176 sendValue(userRequest.owner , etherToTransfer);

177 emit RequestRedeemed(msg.sender , userRequest.owner ,

ë etherToTransfer);

178 }

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 10: UserWithdrawalManager.sol (Line 202)

198 function deleteRequestId(uint256 _requestId , address _owner)

ë internal {

199 delete (userWithdrawRequests[_requestId]);

200 uint256 userRequestCount = requestIdsByUserAddress[_owner].

ë length;

201 uint256 [] storage requestIds = requestIdsByUserAddress[_owner

ë];

202 for (uint256 i = 0; i < userRequestCount; i++) {

203 if (_requestId == requestIds[i]) {

204 requestIds[i] = requestIds[userRequestCount - 1];

205 requestIds.pop();

206 return;

207 }

208 }

209 revert CannotFindRequestId ();

210 }

Proof of Concept:

1. Bob performs, 80000 requestWithdraw() calls and sets Alice as the

owner.

2. Alice performs a requestWithdraw() call, setting herself as the

owner.

3. finalizeUserWithdrawalRequest() is called.

4. Alice tries to call claim() to claim her latest requestId, but the

call reverts as the block gas limit is reached.

BVSS:

AO:A/AC:H/AX:L/C:N/I:N/A:C/D:N/Y:M/R:N/S:U (3.7)

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to update the UserWithdrawalManager.requestWithdraw()

function as suggested.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.5 (HAL-05) MISMANAGEMENT OF
VALIDATOR STATUS LEADING TO
POTENTIAL BLOCKING OF WITHDRAWALS -
LOW (3.7)

Description:

In the withdrawnValidators function, there is a potential risk when an

oracle incorrectly flags a validator in the predeposit or initialized

status as fully withdrawn. The issue arises from the system’s inability

to send <32 ETH to a withdrawn validator.

Code Location:

/PermissionedNodeRegistry.sol#L683-L689

Listing 11

1 function isNonTerminalValidator(uint256 _validatorId) internal

ë view returns (bool) {

2 Validator memory validator = validatorRegistry[

ë _validatorId];

3 return

4 !(validator.status == ValidatorStatus.WITHDRAWN ||

5 validator.status == ValidatorStatus.FRONT_RUN ||

6 validator.status == ValidatorStatus.

ë INVALID_SIGNATURE);

7 }

BVSS:

AO:A/AC:H/AX:L/C:N/I:N/A:C/D:N/Y:M/R:N/S:U (3.7)

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/blob/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9/contracts/PermissionedNodeRegistry.sol#L683-L689

Recommendation:

Consider using isActiveValidator instead of isNonTerminalValidator.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.6 (HAL-06) ABI.ENCODEPACKED()
SHOULD NOT BE USED WITH DYNAMIC
TYPES WHEN PASSING THE RESULT TO A
HASH FUNCTION SUCH AS KECCAK256() -
LOW (2.3)

Description:

Use abi.encode() instead, which will pad items to 32 bytes, which

will prevent hash collisions (e.g. abi.encodePacked(0x123,0x456) => 0

x123456 => abi.encodePacked(0x1,0x23456), but abi.encode(0x123,0x456)=>

0x0...1230...456). Unless there is a compelling reason, abi.encode

should be preferred. If there is only one argument to abi.encodePacked()

it can often be cast to bytes() or bytes32() instead.

Code Location:

StaderOracle.sol

- Line 110: abi.encodePacked(

- Line 119: abi.encodePacked(

- Line 179: abi.encodePacked(

- Line 190: abi.encodePacked(

- Line 236:

bytes32 nodeSubmissionKey = keccak256(abi.encodePacked(msg.sender,

_sdPriceData.reportingBlockNumber));

- Line 237:

bytes32 submissionCountKey = keccak256(abi.encodePacked(_sdPriceData.

reportingBlockNumber));

- Line 291: abi.encodePacked(

- Line 303: abi.encodePacked(

- Line 366: abi.encodePacked(

- Line 374: abi.encodePacked(

- Line 437:

abi.encodePacked(msg.sender, _mapd.index, _mapd.pageNumber,

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

encodedPubkeys)

- Line 439:

bytes32 submissionCountKey = keccak256(abi.encodePacked(_mapd.index,

_mapd.pageNumber, encodedPubkeys));

UtilLib.sol

- Line 134:

return sha256(abi.encodePacked(_pubkey, bytes16(0)));

SocializingPool.sol

- Line 168:

bytes32 node = keccak256(abi.encodePacked(_operator, _amountSD,

_amountETH));

PermissionedPool.sol

- Line 244:

bytes32 pubkey_root = sha256(abi.encodePacked(_pubkey, bytes16(0)));

- Line 246: abi.encodePacked(

- Line 247: sha256(abi.encodePacked(_signature[:64])),

- Line 248: sha256(abi.encodePacked(_signature[64:], bytes32(0)))

- Line 253: abi.encodePacked(

- Line 254:

sha256(abi.encodePacked(pubkey_root, _withdrawCredential)),

- Line 255:

sha256(abi.encodePacked(amount, bytes24(0), signature_root))

PermissionlessPool.sol

- Line 238:

bytes32 pubkey_root = sha256(abi.encodePacked(_pubkey, bytes16(0)));

- Line 240: abi.encodePacked(

- Line 241: sha256(abi.encodePacked(_signature[:64])),

- Line 242: sha256(abi.encodePacked(_signature[64:], bytes32(0)))

- Line 247: abi.encodePacked(

- Line 248:

sha256(abi.encodePacked(pubkey_root, _withdrawCredential)),

- Line 249:

sha256(abi.encodePacked(amount, bytes24(0), signature_root))

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

VaultFactory.sol

- Line 93:

return abi.encodePacked(bytes1(0x01), bytes11(0x0), address(

_withdrawVault));

BVSS:

AO:A/AC:M/AX:M/C:H/I:L/A:N/D:N/Y:N/R:P/S:C (2.3)

Recommendation:

Consider using abi.encode instead of abi.encodePacked.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.7 (HAL-07)
COMPUTEWITHDRAWVAULTADDRESS AND
COMPUTENODEELREWARDVAULTADDRESS MAY
RETURN INCORRECT ADDRESSES - LOW
(3.7)

Description:

When the vaultProxyImplementation address is updated by an admin, the

computeWithdrawVaultAddress() and computeNodeELRewardVaultAddress()

functions will return incorrect addresses as these functions use the

ClonesUpgradeable.predictDeterministicAddress(vaultProxyImplementation,

salt) library function to determine which address to return. Given the

same vaultProxyImplementation and salt values, this function will always

return the same address. However, the vaultProxyImplementation address

can be changed by an admin call to updateVaultProxyAddress(), causing

the returned addresses to point to non-existing contracts:

Listing 12: VaultFactory.sol (Line 95)

93 function updateVaultProxyAddress(address _vaultProxyImpl) external

ë override onlyRole(DEFAULT_ADMIN_ROLE) {

94 UtilLib.checkNonZeroAddress(_vaultProxyImpl);

95 vaultProxyImplementation = _vaultProxyImpl;

96 emit UpdatedVaultProxyImplementation(vaultProxyImplementation)

ë ;

97 }

The impact of this vulnerability can be quite severe. The

PermissionlessPool.preDepositOnBeaconChain() function, which internally

calls VaultFactory.computeWithdrawVaultAddress(), would deposit funds

to the wrong address. This would effectively lock the funds in a

non-recoverable manner as they are sent to non-existing contracts:

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 13: PermissionlessPool.sol (Line 95)

85 function preDepositOnBeaconChain(

86 bytes [] calldata _pubkey ,

87 bytes [] calldata _preDepositSignature ,

88 uint256 _operatorId ,

89 uint256 _operatorTotalKeys

90) external payable nonReentrant {

91 UtilLib.onlyStaderContract(msg.sender , staderConfig ,

ë staderConfig.PERMISSIONLESS_NODE_REGISTRY ());

92 address vaultFactory = staderConfig.getVaultFactory ();

93 uint256 pubkeyCount = _pubkey.length;

94 for (uint256 i; i < pubkeyCount;) {

95 address withdrawVault = IVaultFactory(vaultFactory).

ë computeWithdrawVaultAddress(

96 INodeRegistry ((staderConfig).

ë getPermissionlessNodeRegistry ()).POOL_ID (),

97 _operatorId ,

98 _operatorTotalKeys + i

99);

100 bytes memory withdrawCredential = IVaultFactory(

ë vaultFactory).getValidatorWithdrawCredential(withdrawVault);

101

102 bytes32 depositDataRoot = this.computeDepositDataRoot(

103 _pubkey[i],

104 _preDepositSignature[i],

105 withdrawCredential ,

106 staderConfig.getPreDepositSize ()

107);

108 //slither -disable -next -line arbitrary -send -eth

109 IDepositContract(staderConfig.getETHDepositContract ()).

ë deposit{value: staderConfig.getPreDepositSize ()}(

110 _pubkey[i],

111 withdrawCredential ,

112 _preDepositSignature[i],

113 depositDataRoot

114);

115 emit ValidatorPreDepositedOnBeaconChain(_pubkey[i]);

116 unchecked {

117 ++i;

118 }

119 }

120 }

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:H/AX:L/C:N/I:M/A:C/D:N/Y:N/R:N/S:U (3.7)

Recommendation:

It is recommended to prevent the admin from updating the

vaultProxyImplementation. This will ensure that the functions

computeWithdrawVaultAddress() and computeNodeELRewardVaultAddress()

always return correct addresses.

Another option is creating a mapping to store the historical val-

ues of vaultProxyImplementation against the addresses returned by

deployWithdrawVault() and deployNodeELRewardVault(). This way, even

if the vaultProxyImplementation address is updated, the contract can

reference the correct implementation address at the time of deployment,

preventing it from pointing to non-existing contracts.

Remediation Plan:

SOLVED: The Stader team acknowledged the possible concern that might

arise if updates to the ETHx smart contracts are not carefully executed

in the future. To avoid any such complications, Stader's DAO will conduct

a thorough examination of all future updates and will also seek multiple

external audits. In the current contract setup, they’ve integrated

several safety measures to avert any such issues. For instance, a

feature like updateVaultProxyAddress is overseen by a time-delayed multi-

signature mechanism, and they can pause the contracts when needed. These

precautions are implemented to prevent potential issues from arising.

44

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.8 (HAL-08) VAULTPROXY IS SUBJECT
TO STORAGE COLLISIONS - LOW (3.7)

Description:

The contract VaultProxy is a custom proxy implementation used by

the StaderLabs team. This proxy will be used as the proxy to the

ValidatorWithdrawalVault and NodeELRewardVault implementations.

VaultProxy storage

ValidatorWithdrawalVault storage

NodeELRewardVault storage

In the realm of smart contracts, and particularly in Solidity, it is

essential to emphasize the consideration of storage handling when using

proxy contracts.

Primarily, proxy contracts should ideally possess no storage of their

own. The reason behind this stems from the fundamental purpose of a proxy

contract, which is to delegate calls to an underlying logic contract,

hence maintaining minimal functionality itself. This approach simplifies

the upgradeability process, as changes to the logic contract do not

necessitate modification to the storage layout of the proxy contract.

However, if a proxy contract does require its own storage, it is strongly

recommended that the storage slots are positioned randomly or non-

consecutively. This tactic mitigates the risk of collision with the

45

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

storage layout of the logic contract, thereby reducing the potential for

critical issues.

Storage collision can occur when the proxy and logic contracts both

attempt to access or modify the same storage slot. This can lead to

unpredictable behavior, corrupt data, and in the worst-case scenario,

make the contract vulnerable to exploits. The EVM does not differentiate

storage spaces of different contracts in a delegatecall context. If the

storage layouts are not carefully handled, writing to a storage location

in the logic contract might unintentionally affect the state of the proxy

contract, or vice versa.

With the current implementation of the ValidatorWithdrawalVault and

NodeELRewardVault contracts, there is no issue as:

1. There is a storage collision in VaultProxy and ValidatorWithdrawalVault

with the vaultSettleStatus state variable, although this is not a

problem as both contracts save this state variable in exactly the

same storage slot.

2. NodeELRewardVault uses no storage.

Although, if any of these contracts (ValidatorWithdrawalVault and

NodeELRewardVault) were updated in the future, and they used new

positions in their storage slots, a storage collision would occur. For

this reason, the ideal practice is to strive for proxy contracts with

no storage. If storage is unavoidable, it is crucial to ensure that

the storage slots are organized randomly or non-consecutively to avoid

potential storage collision.

BVSS:

AO:A/AC:H/AX:L/C:N/I:M/A:C/D:N/Y:N/R:N/S:U (3.7)

Recommendation:

It is recommended to strive for proxy contracts with no storage. If

storage is unavoidable, it is crucial to ensure that the storage slots

46

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

are organized randomly or non-consecutively to avoid potential storage

collision, ensuring a more robust and secure smart contract architecture.

Remediation Plan:

SOLVED: The Stader team has noted the highlighted concern and provided an

explanation. The concern revolves around potential harm that could occur

if updates are made to the ETHx smart contracts without proper considera-

tion. To mitigate this risk, the Stader DAO will oversee any forthcoming

updates and will obtain multiple audits to prevent such issues. It is

important to note that under the present contract setup/configuration,

this issue does not pose a concern.

47

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.9 (HAL-09) CHAINLINK’S
LATESTROUNDDATA MIGHT RETURN STALE
OR INCORRECT RESULTS -
INFORMATIONAL (0.0)

Description:

The getPORFeedData() function in the StaderOracle contract fetches the

price of the assets from Chainlink aggregators using the latestRoundData()

function:

Listing 14: StaderOracle.sol (Lines 646-649)

637 function getPORFeedData ()

638 internal

639 view

640 returns (

641 uint256 ,

642 uint256 ,

643 uint256

644)

645 {

646 (, int256 totalETHBalanceInInt , , ,) = AggregatorV3Interface(

ë staderConfig.getETHBalancePORFeedProxy ())

647 .latestRoundData ();

648 (, int256 totalETHXSupplyInInt , , ,) = AggregatorV3Interface(

ë staderConfig.getETHXSupplyPORFeedProxy ())

649 .latestRoundData ();

650 return (uint256(totalETHBalanceInInt), uint256(

ë totalETHXSupplyInInt), block.number);

651 }

However, there are no checks on roundID or timeStamp. If there is

a problem with Chainlink starting a new round and finding consensus

on the new value for the oracle (e.g. Chainlink nodes abandoning the

oracle, chain congestion, vulnerability/attacks on the Chainlink system)

consumers of this contract may continue using obsolete data.

48

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

On the other hand, according to Chainlink’s documentation,

latestRoundData() does not raise an error if no response has been

reached, but returns 0, in this case feeding an incorrect price to the

StaderOracle contract.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

It is recommended to add the following checks on the return data of the

latestRoundData() function:

Listing 15: StaderOracle.sol (Lines 646-657)

637 function getPORFeedData ()

638 internal

639 view

640 returns (

641 uint256 ,

642 uint256 ,

643 uint256

644)

645 {

646 (uint80 baseRoundID , int256 totalETHBalanceInInt , , uint256

ë baseTimestamp , uint80 baseAnsweredInRound) = AggregatorV3Interface

ë (staderConfig.getETHBalancePORFeedProxy ())

647 .latestRoundData ();

648 require(totalETHBalanceInInt > 0, "ChainlinkPriceOracle:

ë totalETHBalanceInInt <= 0");

649 require(baseAnsweredInRound >= baseRoundID , "

ë ChainlinkPriceOracle: Stale price");

650 require(baseTimestamp > 0, "ChainlinkPriceOracle: Round not

ë complete");

651 (baseRoundID , int256 totalETHXSupplyInInt , , baseTimestamp ,

ë baseAnsweredInRound) = AggregatorV3Interface(staderConfig.

ë getETHXSupplyPORFeedProxy ())

652 .latestRoundData ();

653 require(totalETHXSupplyInInt > 0, "ChainlinkPriceOracle:

ë totalETHXSupplyInInt <= 0");

49

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

654 require(baseAnsweredInRound >= baseRoundID , "

ë ChainlinkPriceOracle: Stale price");

655 require(baseTimestamp > 0, "ChainlinkPriceOracle: Round not

ë complete");

656 return (uint256(totalETHBalanceInInt), uint256(

ë totalETHXSupplyInInt), block.number);

657 }

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged the concern raised with

the following reason. Currently, the Chainlink implementation is not fi-

nalized. A toggle parameter currently prevents ER updates from Chainlink.

When observing production contracts, it is evident that ER is currently

fetched more from Oracles than Chainlink. The switch to Chainlink for

ER feeds will only occur after thorough and extensive testing has been

conducted.

50

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.10 (HAL-10) FLOATING PRAGMA -
INFORMATIONAL (0.0)

Description:

Contracts should be deployed with the same compiler version and flags

used during development and testing. Locking the pragma helps to ensure

that contracts do not accidentally get deployed using another pragma.

For example, an outdated pragma version might introduce bugs that affect

the contract system negatively.

Code Location:

Auction.sol

- Line 2: pragma solidity ^0.8.16;

ETHx.sol

- Line 2: pragma solidity ^0.8.16;

NodeELRewardVault.sol

- Line 2: pragma solidity ^0.8.16;

Penalty.sol

- Line 2: pragma solidity ^0.8.16;

PermissionedNodeRegistry.sol

- Line 2: pragma solidity ^0.8.16;

PermissionedPool.sol

- Line 2: pragma solidity ^0.8.16;

PermissionlessNodeRegistry.sol

- Line 2: pragma solidity ^0.8.16;

PermissionlessPool.sol

- Line 2: pragma solidity ^0.8.16;

51

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

PoolSelector.sol

- Line 2: pragma solidity ^0.8.16;

PoolUtils.sol

- Line 2: pragma solidity ^0.8.16;

SDCollateral.sol

- Line 2: pragma solidity ^0.8.16;

SocializingPool.sol

- Line 2: pragma solidity ^0.8.16;

StaderConfig.sol

- Line 2: pragma solidity ^0.8.16;

StaderInsuranceFund.sol

- Line 2: pragma solidity ^0.8.16;

StaderOracle.sol

- Line 2: pragma solidity ^0.8.16;

StaderStakePoolsManager.sol

- Line 2: pragma solidity ^0.8.16;

UserWithdrawalManager.sol

- Line 2: pragma solidity ^0.8.16;

ValidatorWithdrawalVault.sol

- Line 2: pragma solidity ^0.8.16;

VaultFactory.sol

- Line 2: pragma solidity ^0.8.16;

UtilLib.sol

- Line 2: pragma solidity ^0.8.16;

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

52

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Consider locking the pragma version in the smart contracts. It is not

recommended to use a floating pragma in production.

For example: pragma solidity 0.8.16;

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

53

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.11 (HAL-11) LACK OF ENFORCEMENT
ON MINIMUM NUMBER OF TRUSTED NODES -
INFORMATIONAL (0.0)

Description:

The current implementation of the removeTrustedNode function allows the

removal of trusted nodes without enforcing a minimum number of trusted

nodes that should always be present in the system. As a result, it is

theoretically possible to remove all trusted nodes, which could lead to

the failure of any system processes that rely on these nodes.

If all trusted nodes are removed, it could potentially bring the system

to a halt, disrupting services and leading to a loss of trust among

users. Furthermore, it could potentially make the system more vulnerable

to attacks.

Code Location:

StaderOracle.sol#LL84C14-L84C31

Listing 16

1 function addTrustedNode(address _nodeAddress) external

ë override {

2 UtilLib.onlyManagerRole(msg.sender , staderConfig);

3 UtilLib.checkNonZeroAddress(_nodeAddress);

4 if (isTrustedNode[_nodeAddress]) {

5 revert NodeAlreadyTrusted ();

6 }

7 isTrustedNode[_nodeAddress] = true;

8 trustedNodesCount ++;

9

10 emit TrustedNodeAdded(_nodeAddress);

11 }

12

13 /// @inheritdoc IStaderOracle

14 function removeTrustedNode(address _nodeAddress) external

54

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/blob/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9/contracts/StaderOracle.sol#LL84C14-L84C31

ë override {

15 UtilLib.onlyManagerRole(msg.sender , staderConfig);

16 UtilLib.checkNonZeroAddress(_nodeAddress);

17 if (! isTrustedNode[_nodeAddress]) {

18 revert NodeNotTrusted ();

19 }

20 isTrustedNode[_nodeAddress] = false;

21 trustedNodesCount --;

22

23 emit TrustedNodeRemoved(_nodeAddress);

24 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

Add a check to ensure that there are always a minimum number of trusted

nodes in the system.

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

55

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.12 (HAL-12) TYPO ON THE EVENT -
INFORMATIONAL (0.0)

Description:

In the updateBidIncrement function, the event name BidInrementUpdated

appears to have a typographical error. It seems like it should be

BidIncrementUpdated instead of BidInrementUpdated. This can cause con-

fusion and could lead to issues in event tracking or when using event

logs for any kind of automation or tracking system.

Code Location:

Auction.sol#L153

Listing 17

1 function updateBidIncrement(uint256 _bidIncrement) external

ë override {

2 UtilLib.onlyManagerRole(msg.sender , staderConfig);

3 bidIncrement = _bidIncrement;

4 emit BidInrementUpdated(_bidIncrement);

5 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

Typographical errors in code, especially in function or event names,

should be fixed as soon as possible to prevent future issues. The

corrected code should look like this:

56

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/blob/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9/contracts/Auction.sol#L153

Listing 18

1 function updateBidIncrement(uint256 _bidIncrement) external

ë override {

2 UtilLib.onlyManagerRole(msg.sender , staderConfig);

3 bidIncrement = _bidIncrement;

4 emit BidIncrementUpdated(_bidIncrement); // Corrected event

ë name

5 }

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

57

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.13 (HAL-13) LOOP OPTIMIZATION -
INFORMATIONAL (0.0)

Description:

When a loop iterates many times, it causes the amount of gas required to

execute the function to increase significantly. In Solidity, excessive

looping can cause a function to use more than the maximum allowed gas,

which causes the function to fail.

Code Location:

PermissionlessNodeRegistry.sol

- Line 135:

for (uint256 i = 0; i < keyCount; i++){}

- Line 190:

for (uint256 i = 0; i < readyToDepositValidatorsLength; i++){}

- Line 202:

for (uint256 i = 0; i < frontRunValidatorsLength; i++){}

- Line 209:

for (uint256 i = 0; i < invalidSignatureValidatorsLength; i++)

- Line 228:

for (uint256 i = 0; i < withdrawnValidatorCount; i++){}

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

To reduce gas consumption, it is recommended to find ways to optimize the

loop or potentially break the loop into smaller batches. The following

pattern can also be used:

58

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 19

1 uint256 cachedLen = array.length;

2 for(uint i; i < cachedLen ;){

3

4 unchecked {

5 ++i;

6 }

7 }

Remediation Plan:

SOLVED: The StaderLabs team solved the issue in the following commit ID.

Commit ID : 9c245db775127c29b18fa106145e5ccd68e7faa0.

59

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/9c245db775127c29b18fa106145e5ccd68e7faa0

4.14 (HAL-14) MISSING/INCOMPLETE
NATSPEC COMMENTS - INFORMATIONAL
(0.0)

Description:

The functions are missing @param for some of their parameters. Given

that NatSpec is an important part of code documentation, this affects

code comprehension, auditability, and usability.

Code Location:

Contracts

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:C (0.0)

Recommendation:

Consider adding in full NatSpec comments for all functions to have complete

code documentation for future use.

Remediation Plan:

ACKNOWLEDGED: The StaderLabs team acknowledged this issue.

60

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/stader-labs/ethx/tree/eb9140b5b7779be3942e5bbcc8f52ebb33bf0df9/contracts

61

RECOMMENDATIONS
OVERVIEW

1. Remove the assert(address(this).balance == 0) from the

stakeUserETHToBeaconChain() function.

2. Use delete to delete all the elements of an array in the StaderOracle

.submitSDPrice() function.

3. Update the UserWithdrawalManager.requestWithdraw() function as sug-

gested.

4. Lock the pragma version in all the smart contracts.

5. Code adjustments should be made in the deactivateNodeOperator and

_deactivateNodeOperator functions to not only flag the operator as

inactive, but also to remove its permissions from the permissionList.

This will prevent the operator from being re-onboarded or perform-

ing actions that require permissions after deactivation, thereby

enhancing the system’s security.

6. To mitigate the potential risk in the withdrawnValidators func-

tion, it is crucial to enhance the system’s ability to handle cases

when a validator is incorrectly flagged as fully withdrawn in the

predeposit or initialized status by an oracle. This could be done

by implementing a verification mechanism to double-check the status

of the validator before executing the withdrawal function.

7. To address the identified issue in the requestWithdraw function,

it is crucial to revise the implementation to prevent the

lastWithdrawReqTimestamp from being updated on every call. Rather,

it should be set only on the first call within the withdrawDelay

period. This could be achieved by adding a condition that checks if

the withdrawDelay period has elapsed since the last request before

updating the lastWithdrawReqTimestamp.

8. To rectify the potential issue with the slashSD function, it is ad-

vised to implement a check ensuring that the maxApproveSD function

has been executed before creating an auction. This could be inte-

grated directly into the slashSD function or included in a separate

pre-auction validation process. By ensuring the auction contract

has the necessary approval to spend SD tokens prior to auction cre-

ation, you can prevent potential auction failures and ensure the

smooth operation of the system.

62

RE
CO

MM
EN

DA
TI

ON
S

OV
ER

VI
EW

63

AUTOMATED TESTING

6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their ABIS and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Slither results:

Auction.sol

ETHx.sol

NodeELRewardVault.sol

64

AU
TO

MA
TE

D
TE

ST
IN

G

Penalty.sol

PermissionedNodeRegistry.sol

PermissionedPool.sol

PermissionlessNodeRegistry.sol

65

AU
TO

MA
TE

D
TE

ST
IN

G

PermissionlessPool.sol

PoolSelector.sol

PoolUtils.sol

66

AU
TO

MA
TE

D
TE

ST
IN

G

SDCollateral.sol

SocializingPool.sol

StaderConfig.sol

StaderInsuranceFund.sol

67

AU
TO

MA
TE

D
TE

ST
IN

G

StaderOracle.sol

StaderStakePoolsManager.sol

UserWithdrawalManager.sol

68

AU
TO

MA
TE

D
TE

ST
IN

G

ValidatorWithdrawalVault.sol

VaultFactory.sol

UtilLib.sol

• All the reentrancies flagged by Slither were checked individually

69

AU
TO

MA
TE

D
TE

ST
IN

G

and are false positives.

• No major issues found by Slither.

70

AU
TO

MA
TE

D
TE

ST
IN

G

6.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

Auction.sol

ETHx.sol

NodeELRewardVault.sol

71

AU
TO

MA
TE

D
TE

ST
IN

G

Penalty.sol

PermissionedNodeRegistry.sol

PermissionedPool.sol

PermissionlessNodeRegistry.sol

PermissionlessPool.sol

PoolSelector.sol

72

AU
TO

MA
TE

D
TE

ST
IN

G

PoolUtils.sol

SDCollateral.sol

SocializingPool.sol

StaderConfig.sol

StaderInsuranceFund.sol

StaderOracle.sol

73

AU
TO

MA
TE

D
TE

ST
IN

G

StaderStakePoolsManager.sol

UserWithdrawalManager.sol

ValidatorWithdrawalVault.sol

VaultFactory.sol

UtilLib.sol

No output generated by MythX.

• The floating pragma was correctly flagged by MythX.

• block.number and block.hash are not used as a source of randomness.

• No major issues found by MythX.

74

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	RECOMMENDATIONS OVERVIEW
	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

