
StaderLabs -
Off-chain

Security Review
WebApp Pentest

Prepared by: Halborn

Date of Engagement: May 30th, 2023 - July 5th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 SCOPE 9

1.4 TEST APPROACH & METHODOLOGY 9

RISK METHODOLOGY 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) LACK OF RESOURCES AND RATE LIMITING - MEDIUM 15

Description 15

Code Location 15

CVSS Vector 16

Risk Level 16

Recommendation 16

Remediation Plan 16

References 17

3.2 (HAL-02) LOG WITH LOW RETENTION - MEDIUM 18

Description 18

Code Location 19

Risk Level 20

Recommendation 20

Remediation Plan 20

1

References 21

3.3 (HAL-03) NO FILTER FOR ALREADY REQUESTED PRESIGN MSG - LOW 22

Proof-of-concept 22

CVSS Vector 23

Risk Level 23

Recommendation 23

Remediation Plan 24

3.4 (HAL-04) LACK OF API GATEWAY AUTHORIZATION METHODS - LOW 25

Description 25

Code Location 25

CVSS Vector 26

Risk Level 26

Recommendation 26

Remediation Plan 26

References 26

3.5 (HAL-05) USE OF OUTDATED PACKAGES - LOW 27

Description 27

Evidences 27

CVSS Vector 27

Risk Level 27

Recommendation 28

Remediation Plan 28

3.6 (HAL-06) DEPENDENCIES NOT PINNED TO EXACT VERSION - LOW 29

Description 29

2

Code location 29

CVSS Vector 30

Risk Level 30

Recommendation 30

Remediation Plan 31

3.7 (HAL-07) PERMISSIVE CROSS ORIGIN RESOURCE SHARING (CORS) POL-

ICY - LOW 33

Description 33

Code Location 33

CVSS Score 34

Risk Level 34

Recommendation 34

Remediation Plan 34

3.8 (HAL-08) OLD NODEJS VERSION IN LAMBDA - INFORMATIONAL 36

Description 36

Code location 36

Risk Level 36

Recommendation 37

Remediation Plan 37

3.9 (HAL-09) OLD PYTHON VERSION IN LAMBDA - INFORMATIONAL 38

Description 38

Code Location 38

Risk Level 39

Recommendation 39

Remediation Plan 39

3.10 (HAL-10) INSECURE RANDOM NUMBER GENERATOR - INFORMATIONAL 40

Description 40

3

Code Location 40

Recommendation 41

Remediation Plan 41

3.11 (HAL-11) PRESENCE OF TODO COMMENTS IN SOURCE CODE - INFORMATIONAL

42

Description 42

Evidences 42

Risk Level 43

Recommendation 43

Remediation Plan 43

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/30/2023 Carlos Polop

0.2 Document Updates 06/07/2023 Pau Borda Carrasco

0.3 Draft Review 06/14/2023 Carlos Polop

0.4 Draft Review 06/15/2023 Gabi Urrutia

1.0 Remediation Plan 07/03/2023 Pau Borda Carrasco

1.1 Remediation Plan Review 07/05/2023 Carlos Polop

1.2 Remediation Plan Review 07/05/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Carlos Polop Halborn Carlos.Polop@halborn.com

Pau Borda
Carrasco

Halborn Pau.Carrasco@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Carlos.Polop@halborn.com
mailto:Pau.Carrasco@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

StaderLabs engaged Halborn to conduct a security audit on several Off-

chain code repositories starting on May 30th, 2023 and ending on July 5th,

2023. The security assessment was scoped to the repositories provided to

the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned

a full-time security engineer to audit the security of the code. The

security engineer is a penetration testing expert with advanced knowledge

in web, recon, API, code review, discovery & infrastructure penetration

testing.

The purpose of this audit is to:

• Ensure that the code doesn't contain vulnerabilities of potential

security bus, and report the ones found.

In summary, Halborn identified some security risks that were mostly

addressed by the StaderLabs team.

Two medium severity issues were identified: lack of resource and rate

limiting, and log with low retention. These vulnerabilities could lead

to an attacker to potential denial-of-service (DoS) attacks, and could

affect StaderLabs team to not be able to investigate incidents in the

past due to the low log retention period.

Lastly, five low severity issues were found: no filter for already re-

quested presign msg, lack of API authorization methods, use of outdated

packages, dependencies not pinned to exact version, and CORS miscon-

figuration. While these issues pose a lower risk, they still present

potential security concerns.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

Overall, it is essential to address these vulnerabilities in order to

improve the security posture of the application.

1.3 SCOPE

The provided repositories in scope for this assessment are stader-labs/

eth-offchain-infra, stader-labs/ethx-rewards-offchain, and stader-labs/

ethx-verification-apis, and their commits are:

Commit ID: a7b990eba438ede76feb4de456638c751879973e

Commit ID: 2d807bf62d88e5dc548fcc8db96100e604e30cf5

Commit ID: 14ae14a7610782175dc69f8203776c5e3707133e

1.4 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual view of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the program audit. While manual testing

is recommended to uncover flaws in logic, process, and implementation;

automated testing techniques help enhance coverage of programs and can

quickly identify items that do not follow security best practices. The

following phases and associated tools were used throughout the term of

the audit:

• Storing private keys and assets securely.

• Application Logic Flaws.

• Fuzzing of all input parameters.

• Areas where insufficient validation allows for hostile input.

• Research into architecture and purpose.

• Static Analysis of security for scoped program.

• Manual Assessment for discovering security vulnerabilities.

• Known vulnerabilities in 3rd party / OSS dependencies.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/stader-labs/eth-offchain-infra/tree/a7b990eba438ede76feb4de456638c751879973e
https://github.com/stader-labs/ethx-rewards-offchain/tree/2d807bf62d88e5dc548fcc8db96100e604e30cf5
https://github.com/stader-labs/ethx-verification-apis/tree/14ae14a7610782175dc69f8203776c5e3707133e

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

10

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - 1 - VERY LOW AND INFORMATIONAL

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 5 4

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-03)
(HAL-04)

(HAL-02)

(HAL-05)
(HAL-06)
(HAL-07)

(HAL-08)
(HAL-09)
(HAL-10)
(HAL-11)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

LACK OF RESOURCES AND RATE LIMITING Medium SOLVED - 7/3/2023

LOG WITH LOW RETENTION Medium SOLVED - 7/3/2023

NO FILTER FOR ALREADY REQUESTED
PRESIGN MSG

Low SOLVED - 7/3/2023

LACK OF API GATEWAY AUTHORIZATION
METHODS

Low RISK ACCEPTED

USE OF OUTDATED PACKAGES Low RISK ACCEPTED

DEPENDENCIES NOT PINNED TO EXACT
VERSION

Low SOLVED - 7/3/2023

PERMISSIVE CROSS ORIGIN RESOURCE
SHARING (CORS) POLICY

Low SOLVED - 7/3/2023

OLD NODEJS VERSION IN LAMBDA Informational ACKNOWLEDGED

OLD PYTHON VERSION IN LAMBDA Informational ACKNOWLEDGED

INSECURE RANDOM NUMBER GENERATOR Informational SOLVED - 7/3/2023

PRESENCE OF TODO COMMENTS IN SOURCE
CODE

Informational SOLVED - 7/3/2023

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) LACK OF RESOURCES AND
RATE LIMITING - MEDIUM

Description:

API requests consume resources such as network, CPU, memory, storage,

and budget. This vulnerability occurs when too many requests arrive

simultaneously, and the API does not have enough compute resources to

handle those requests or increases the price of the invoice if using a

pay-per-use mode.

An attacker could exploit this vulnerability to overload the API by

sending more requests than it can handle. As a result, the API becomes

unavailable or unresponsive to new requests.

Code Location:

As shown below, the configuration of the API gateway does not contain

any usage plan, which specifies who can access one or more deployed API

stages and methods, and the rate at which they can be accessed.

In file eth-offchain-infra/lib/eth-offchain-infra-stack.ts:

Listing 1

1 // ###### -START -###### Api gateway ###### -START -######

2 const api = new aws_apigateway.RestApi(this , `${namingPrefix}

ë Apis `, {

3 restApiName: `${namingPrefix}Apis `,

4 deployOptions: {

5 tracingEnabled: true ,

6 dataTraceEnabled: true ,

7 loggingLevel: aws_apigateway.MethodLoggingLevel.INFO ,

8 metricsEnabled: true ,

9 // Enable access logging

10 accessLogDestination: new aws_apigateway.

ë LogGroupLogDestination(

11 logGroup

12),

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

13 accessLogFormat:

14 aws_apigateway.AccessLogFormat.jsonWithStandardFields (),

15 },

16 });

17 // ###### -END -###### Api gateway ###### -END -######

NOTE: The lack of rate limit implementation in the API can cause overloads

on the API as well as economic impact since StaderLabs is using an AWS

REST API linked to lambdas and dynamoDB pay per use.

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Risk Level:

Likelihood - 3

Impact - 4

Recommendation:

This vulnerability is due to the application accepting requests from

users at a given time without performing request throttling checks. It

is recommended to follow the following best practices:

• Implement a limit on how often a client can call the API within a

defined timeframe.

• Notify the client when the limit is exceeded by providing the limit

number and the time the limit will be reset.

Remediation Plan:

SOLVED: StaderLabs fixed the issue by implementing throttlingRateLimit

on the API Gateway configuration. Code shown below:

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Listing 2

1 // ###### -START -###### Api gateway ###### -START -######

2 const api = new aws_apigateway.RestApi(this , `${namingPrefix}

ë Apis `, {

3 restApiName: `${namingPrefix}Apis `,

4 deployOptions: {

5 tracingEnabled: true ,

6 dataTraceEnabled: true ,

7 loggingLevel: aws_apigateway.MethodLoggingLevel.INFO ,

8 metricsEnabled: true ,

9 // Enable access logging

10 accessLogDestination: new aws_apigateway.

ë LogGroupLogDestination(

11 logGroup

12),

13 accessLogFormat:

14 aws_apigateway.AccessLogFormat.jsonWithStandardFields (),

15 methodOptions: {

16 "*/*": {

17 throttlingBurstLimit: 500,

18 throttlingRateLimit: 500,

19 },

20 },

21 },

22 });

23 // ###### -END -###### Api gateway ###### -END -######

References:

CWE-770: Allocation of Resources Without Limits or Throttling

AWS Plan Usage Implementation

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://cwe.mitre.org/data/definitions/770.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway-readme.html#usage-plan--api-keys

3.2 (HAL-02) LOG WITH LOW
RETENTION - MEDIUM

Description:

In order for logs to be useful, they need to have a sufficient retention

period to be able to investigate incidents in the past. For instance, an

attack could happen in January, but it could go unnoticed until May. If

the retention period was lower than 5 months, it would be very hard to

investigate how the attack was initialized.

One year is a commonly agreed upon standard for long retention, meeting

most regulations, including FISMA, HIPAA and PCI DSS. However, this will

depend on the kind of log and your risk appetite. It’s recommended to

retain the logs at least for 90 days.

The following lambdas had a short retention period of 7 days:

• PublicKeyLambda

• SinglePresignLambda

• MultiplePresignLambda

• PresignSubmittedLambda

• PresignsSubmittedLambda

• CreateMerklesForElRewardsLambda

• ReadProofsByOperatorForElRewardsLambda

• InfoByCycleAndPoolId

• ConsensusLayerRewardsDistributorLambda

• DepositEthOverTargetWeightLambda

• ElRewardsVaultDistributorLambda

• UpdatePenaltiesReportedByRatedLambda

• UserRedemptionLambda

• ValidatorBatchDepositLambda

• MarkValidatorReadyToDepositLambda

• PermissionedMarkValidatorReadyToDepositLambda

• PermissionlessMarkValidatorReadyToDepositLambda

• NormalExitLambda

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

• ForcedExitLambda

• ExitValidatorEventTrackLambda

• ForceExitValidatorEventTrackLambda

• ValidatorPreDepositedOnBeaconChainEventTrackLambda

Code Location:

In file eth-offchain-infra-/lib/eth-offchain-infra-stack.ts:

Listing 3

1 const getBaseLambdaOptions = (

2 env: Record <string , string >

3): aws_lambda_nodejs.NodejsFunctionProps => ({

4 awsSdkConnectionReuse: true ,

5 handler: "handler",

6 memorySize: 512, // Can be increased to 512/1024 for more memory

ë ->performance

7 // ephemeralStorageSize: Size.gibibytes (1), // /tmp directory in

ë MiB

8 // reservedConcurrentExecutions ?? // Max concurrent executions

9 environment: env ,

10 logRetention: aws_logs.RetentionDays.ONE_WEEK ,

11 tracing: aws_lambda.Tracing.ACTIVE ,

12 timeout: Duration.seconds (900),

13 retryAttempts: 0,

14 runtime: aws_lambda.Runtime.NODEJS_16_X ,

15 });

Listing 4

1 // ###### -START -###### Log groups ###### -START -######

2 const logGroup = new aws_logs.LogGroup(this , `${namingPrefix}

ë LogGroup `, {

3 logGroupName: `${namingPrefix}LogGroup `,

4 retention: aws_logs.RetentionDays.ONE_WEEK ,

5 });

6 // ###### -END -###### Log groups ###### -END -######

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Increase the retention period of the log groups to something acceptable

to StaderLabs risk appetite, it is recommended to retain the logs for at

least 90 days.

Remediation Plan:

SOLVED: StaderLabs fixed the issue by implementing one year log retention.

Code shown below:

In file eth-offchain-infra-/lib/eth-offchain-infra-stack.ts:

Listing 5

1 environment: env ,

2 logRetention: aws_logs.RetentionDays.ONE_YEAR ,

3 tracing: aws_lambda.Tracing.ACTIVE ,

4 timeout: Duration.seconds (900),

5 retryAttempts: 0,

Listing 6

1 // ###### -START -###### Log groups ###### -START -######

2 const logGroup = new aws_logs.LogGroup(this , `${namingPrefix}

ë LogGroup `, {

3 logGroupName: `${namingPrefix}LogGroup `,

4 retention: aws_logs.RetentionDays.ONE_YEAR ,

5 });

6 // ###### -END -###### Log groups ###### -END -######

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

References:

• Altering CloudWatch log retention

• Log Retention guidelines

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.aws.amazon.com/managedservices/latest/userguide/log-customize-retention.html
https://consultdts.com/article/nist-800-171-log-retention/#:~:text=One%20year%20is%20a%20commonly,Act%20(GLBA)%2C%20and%20the

3.3 (HAL-03) NO FILTER FOR ALREADY
REQUESTED PRESIGN MSG - LOW

Proof-of-concept:

The implementation of the validation and storage of presign message

workflow works as below:

1. The node will start the process by calling an API endpoint, sending

the validator pub key and a msg.

2. The lambda SinglePresignLambda or MultiplePresignLambda will be

triggered in order to validate & save presign messages to the

database.

3. The lambda will validate the presign message.

• Will decrypt signature.

• Verify that the validator & related info is valid.

• Verify that the signature is valid by calling another API (ethx-

verification-apis).

• Save the presign message to the database.

4. When storing the information in the Dynamo DB, a PUT method is being

used, which means that the operation will be a write or an overwrite

(if the PK-SK exists).

5. Since the lambda is not checking if the information is already

stored and the API, and is not restricted by origin or by

throttle/rate limit, an attacker could initiate the node, start the

process, get the value and update the value infinitely causing a

cost over the AWS infrastructure involved.

6. It is true that the node will call PresignSubmittedLambda or Pre-

signsSubmittedLambda to check if the message is already submitted,

and the API will return a boolean. If the boolean is false, the

node will not engage the save presign message workflow. However,

the call can be done independently.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Figure 1: Workflow

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

The recommended solution is:

- Check if the message exists in the DynamoDB before the storage. The

code in PresignSubmittedLambda and PresignsSubmittedLambda do this check,

the check should be in SinglePresignLambda and MultiplePresignLambda

before starting the process of validation and storage of presign message.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:N

Remediation Plan:

SOLVED: StaderLabs fixed the issue by implementing a filter before storing

a presign msg to ensure that has not been requested before. Code shown

below:

In file src/api/presign/savePresigns.ts:

Listing 7

1 const store = getPresignMsgStore ();

2

3 const inputPresignMsg = presignMessageSchema.parse(JSON.parse(

ë body));

4 const alreadyExists = await store.getById(

5 inputPresignMsg.validatorPublicKey

6);

7 if (alreadyExists) {

8 return {

9 statusCode: 400,

10 body: JSON.stringify ({

11 success: false ,

12 error: `Presign message for validator ${inputPresignMsg.

ë validatorPublicKey} already exists `,

13 }),

14 };

15 }

Listing 8

1 const alreadyExists = await store.getById(msg.

ë validatorPublicKey);

2 if (alreadyExists) {

3 responses[msg.validatorPublicKey] = {

4 success: false ,

5 error: `Presign message for validator ${msg.

ë validatorPublicKey} already exists `,

6 };

7 continue;

8 }

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) LACK OF API GATEWAY
AUTHORIZATION METHODS - LOW

Description:

Authorization is not enabled for the API Gateway methods. This could

allow unexpected access to unauthorized attackers or malicious insiders.

Code Location:

As shown below, the configuration of the API gateway does not contain any

API KEY usage or authorization method, which specifies who can access one

or more deployed API stages and methods.

In file eth-offchain-infra/lib/eth-offchain-infra-stack.ts:

Listing 9

1 // ###### -START -###### Api gateway ###### -START -######

2 const api = new aws_apigateway.RestApi(this , `${namingPrefix}

ë Apis `, {

3 restApiName: `${namingPrefix}Apis `,

4 deployOptions: {

5 tracingEnabled: true ,

6 dataTraceEnabled: true ,

7 loggingLevel: aws_apigateway.MethodLoggingLevel.INFO ,

8 metricsEnabled: true ,

9 // Enable access logging

10 accessLogDestination: new aws_apigateway.

ë LogGroupLogDestination(

11 logGroup

12),

13 accessLogFormat:

14 aws_apigateway.AccessLogFormat.jsonWithStandardFields (),

15 },

16 });

17 // ###### -END -###### Api gateway ###### -END -######

Note: The lambda CreateMerklesForElRewardsLambda in the create.ts file,

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

which is the code that the lambda uses, it checks for an accessKey to

create a Merkle tree for the rewards of a cycle.

CVSS Vector:

• CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Use authorization method or require API Key.

Remediation Plan:

RISK ACCEPTED: StaderLabs accepted the risk of the issue. StaderLabs

does not discard the possibility of fixing it in a future release.

References:

AWS API KEY implementation

API Gatweay Authorizers

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:L/A:N
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_apigateway-readme.html#usage-plan--api-keys
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-apigatewayv2-authorizers-alpha-readme.html

3.5 (HAL-05) USE OF OUTDATED
PACKAGES - LOW

Description:

The components of the platform use third-party dependencies to delegate

handling of different kinds of operations. However, the dependencies

bring forth an expected downside where the security posture of the real

application is now resting on them. The in-scope repository contained

some outdated packages, some with publicly disclosed vulnerabilities of

moderate risk. Additionally, some of these packages were not maintained

anymore, therefore should any new vulnerability be found, they might not

receive the needed security patches.

Evidences:

Figure 2: Npm Audit Vulnerabilities

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:N/A:L

Risk Level:

Likelihood - 2

Impact - 2

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:L/I:N/A:L

Recommendation:

It is highly recommended to perform automated analysis of dependencies

from the birth of the project to ensure they do not contain any security

issues. The developers need to be aware of it and apply the required

mitigation measures to secure the affected components.

Remediation Plan:

RISK ACCEPTED: StaderLabs accepted the risk of the issue. StaderLabs is

using packages that they have used in production over the last one year

and are stable. However, StaderLabs is planning to upgrade later next

year.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) DEPENDENCIES NOT
PINNED TO EXACT VERSION - LOW

Description:

The application contained some dependencies that were not pinned to an

exact version, but were set to a supported version (x.x.x). This could

potentially allow dependency attacks.

Code location:

Dependencies eth-infra-offchain:

Listing 10

1 "dependencies": {

2 "@aws -sdk/client -dynamodb": "^3.44.0",

3 "@aws -sdk/client -secrets -manager": "^3.171.0",

4 "@aws -sdk/client -ssm": "^3.186.0",

5 "@aws -sdk/lib -dynamodb": "^3.44.0",

6 "aws -cdk -lib": "2.37.1",

7 "aws -xray -sdk -core": "^3.3.4",

8 "constructs": "^10.0.0",

9 "ethers": "^5.7.2",

10 "keccak256": "^1.0.6",

11 "merkletreejs": "^0.3.9",

12 "node -fetch": "^3.3.0",

13 "serialize -error": "^11.0.0",

14 "source -map -support": "^0.5.16",

15 "zod": "^3.21.2"

16 }

Dependencies ethx-rewards-offchain:

Listing 11

1 "dependencies": {

2 "@lodestar/api": "^1.5.1",

3 "@lodestar/config": "^1.5.1",

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4 "@openzeppelin/merkle -tree": "^1.0.4",

5 "bignumber.js": "^9.1.1",

6 "bls -eth -wasm": "^1.0.6",

7 "cross -fetch": "^3.1.5",

8 "dotenv": "^16.0.3",

9 "ethers": "^5.7.2",

10 "isomorphic -fetch": "^3.0.0",

11 "keccak256": "^1.0.6",

12 "merkletreejs": "^0.3.9"

13 },

Dependencies ethx-verification-apis:

Listing 12

1 aws -cdk -lib >=2.13.0

2 constructs >=10.0.0 , <11.0.0

3 aws -cdk.aws -apigatewayv2 -alpha

4 aws -cdk.aws -apigatewayv2 -integrations -alpha

5 aws -cdk.aws -lambda -python -alpha

CVSS Vector:

• CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Pinning dependencies to an exact version (=x.x.x) can reduce the chance

of inadvertently introducing a malicious version of a dependency in the

future.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Remediation Plan:

SOLVED: StaderLabs solved the issue by pinning all dependencies to exact

versions. Code shown below:

Dependencies eth-infra-offchain:

Listing 13

1 "devDependencies": {

2 "@typechain/ethers -v5": "10.2.0",

3 "@types/aws -lambda": "8.10.111",

4 "@types/jest": "26.0.24",

5 "@types/node": "16.18.14",

6 "aws -cdk -lib": "2.37.1",

7 "constructs": "10.1.272",

8 "jest": "26.6.3",

9 "ts -jest": "26.5.6",

10 "ts -node": "10.9.1",

11 "typechain": "8.1.1",

12 "typescript": "4.9.5"

13 },

14 "dependencies": {

15 "@aws -sdk/client -dynamodb": "3.287.0",

16 "@aws -sdk/client -kms": "3.354.0",

17 "@aws -sdk/client -secrets -manager": "3.287.0",

18 "@aws -sdk/client -ssm": "3.287.0",

19 "@aws -sdk/lib -dynamodb": "3.287.0",

20 "aws -cdk -lib": "2.37.1",

21 "aws -xray -sdk -core": "3.4.1",

22 "constructs": "10.1.272",

23 "ethers": "5.7.2",

24 "keccak256": "1.0.6",

25 "merkletreejs": "0.3.9",

26 "node -fetch": "3.3.0",

27 "serialize -error": "11.0.0",

28 "source -map -support": "0.5.21",

29 "zod": "3.21.4"

30 }

Dependencies ethx-rewards-offchain:

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 14

1 "dependencies": {

2 "bignumber.js": "9.1.1",

3 "cross -fetch": "3.1.5",

4 "dotenv": "16.0.3",

5 "ethers": "5.7.2",

6 "isomorphic -fetch": "3.0.0",

7 "keccak256": "1.0.6",

8 "merkletreejs": "0.3.9"

9 },

10 "devDependencies": {

11 "@babel/helper -compilation -targets": "7.21.4",

12 "@trivago/prettier -plugin -sort -imports": "4.1.1",

13 "@typechain/ethers -v5": "10.2.0",

14 "@types/isomorphic -fetch": "0.0.36",

15 "@types/node": "14.18.38",

16 "@typescript -eslint/eslint -plugin": "5.55.0",

17 "@typescript -eslint/parser": "5.55.0",

18 "eslint": "8.22.0",

19 "eslint -config -airbnb -base": "15.0.0",

20 "eslint -config -prettier": "8.7.0",

21 "eslint -formatter -table": "7.32.1",

22 "eslint -plugin -import": "2.27.5",

23 "eslint -plugin -prettier": "4.2.1",

24 "nodemon": "2.0.22",

25 "prettier": "2.8.4",

26 "typechain": "8.1.1",

27 "typescript": "4.9.5"

28 }

29 }

Dependencies ethx-verification-apis:

Listing 15

1 aws -cdk -lib ==2.69.0

2 constructs ==10.1.278

3 aws -cdk.aws -apigatewayv2 -alpha ==2.69.0 a0

4 aws -cdk.aws -apigatewayv2 -integrations -alpha ==2.69.0 a0

5 aws -cdk.aws -lambda -python -alpha ==2.69.0 a0

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) PERMISSIVE CROSS
ORIGIN RESOURCE SHARING (CORS)
POLICY - LOW

Description:

The application seems to have a wildcard origin CORS configuration with

authorization header allowed, which is very permissive. This feature

primarily restricts reading information from another origin, where an

origin is defined as a combination of protocol, port, and domain name.

Code Location:

In file eth-offchain-infra/src/constants/apiHeaders.ts:

Listing 16

1 /**

2 * API_HEADERS for cors requests

3 */

4 const API_HEADERS = {

5 "Access -Control -Allow -Origin": "*",

6 "Content -Type": "application/json",

7 "Access -Control -Allow -Method": "GET ,POST ,OPTIONS",

8 };

9

10 export default API_HEADERS;

In file ethx-verification-apis/app.py:

Listing 17

1 # Create the HTTP API with CORS

2 http_api = _apigw.HttpApi(

3 self , "EthxVerificationApigw",

4 cors_preflight=_apigw.CorsPreflightOptions(

5 allow_methods =[_apigw.CorsHttpMethod.GET],

6 allow_origins =["*"],

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

7 max_age=Duration.days (10),

8)

9)

CVSS Score:

• CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

If the application does not rely on cross-origin requests, the CORS policy

should be removed. This will result in the default Same-Origin Policy

being enforced, preventing CSRF and similar attacks from reading sensitive

response data. If the application requires cross-origin requests to

function, the CORS policy should be carefully defined to only permit

resource sharing with trusted origins.

Remediation Plan:

SOLVED: StaderLabs solved the issue by removing the CORS configuration.

Code shown below:

In file eth-offchain-infra/src/constants/apiHeaders.ts the CORS

configuration has been removed.

In file ethx-verification-apis/app.pythe CORS configuration has been

removed.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

Listing 18

1 # Create the HTTP API with CORS

2 http_api = _apigw.HttpApi(

3 self , "EthxVerificationApigw",

4)

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) OLD NODEJS VERSION IN
LAMBDA - INFORMATIONAL

Description:

A review of the function getBaseLambdaOptions in /lib/eth-offchain-infra

-stack.ts file showed that an outdated version of NodeJS is being used.

The latest iteration of the language includes many stability and feature

improvements which may allow developers to implement more consistent,

readable and secure code.

Code location:

Listing 19

1 const getBaseLambdaOptions = (

2 env: Record <string , string >

3): aws_lambda_nodejs.NodejsFunctionProps => ({

4 awsSdkConnectionReuse: true ,

5 handler: "handler",

6 memorySize: 512, // Can be increased to 512/1024 for more memory

ë ->performance

7 // ephemeralStorageSize: Size.gibibytes (1), // /tmp directory in

ë MiB

8 // reservedConcurrentExecutions ?? // Max concurrent executions

9 environment: env ,

10 logRetention: aws_logs.RetentionDays.ONE_WEEK ,

11 tracing: aws_lambda.Tracing.ACTIVE ,

12 timeout: Duration.seconds (900),

13 retryAttempts: 0,

14 runtime: aws_lambda.Runtime.NODEJS_16_X ,

15 });

Risk Level:

Likelihood - 1

Impact - 1

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Halborn recommends that the StaderLabs team reviews the functionality

introduced within the NodeJs 18 of the language, if compatible, upgrade

to the latest version.

Remediation Plan:

ACKNOWLEDGED: StaderLabs acknowledged the issue. StaderLabs does not

discard the possibility of fixing it in a future release.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) OLD PYTHON VERSION IN
LAMBDA - INFORMATIONAL

Description:

A review of ethx-verification-apis-/verify/template.yaml file showed that

an outdated version of Python was being used. The latest iteration of

the language includes many stability and feature improvements which may

allow developers to implement more consistent, readable and secure code.

Code Location:

Listing 20

1 AWSTemplateFormatVersion: '2010 -09 -09'

2 Transform: AWS:: Serverless -2016 -10 -31

3 Description: >

4 python3 .9

5 Verify signature API

6 Globals:

7 Function:

8 Timeout: 900

9

10 Resources:

11 StartFunction:

12 Type: AWS:: Serverless :: Function

13 Properties:

14 PackageType: Image

15 Architectures:

16 - x86_64

17 Metadata:

18 Dockerfile: Dockerfile

19 DockerContext: .

20 DockerTag: python3.9-v1

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Halborn recommends that the StaderLabs team review the functionality

introduced within the Python of the language. If compatible, upgrade to

the latest version.

Remediation Plan:

ACKNOWLEDGED: StaderLabs acknowledged the issue. StaderLabs does not

discard the possibility of implementing it in a future release.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) INSECURE RANDOM
NUMBER GENERATOR - INFORMATIONAL

Description:

The function math.random made use of the math/rand package to generate

random unsigned integers. This library is considered insecure due to

weak random numbers generation.

Code Location:

In file ethx-rewards-offchain/src/utils/randomNumber.ts:

Listing 21

1 /**

2 *

3 * @param from - The lower bound of the range

4 * @param to - The upper bound of the range

5 * @returns - A random number between the specified range

6 */

7 export function randomNumber(from: number , to: number): number {

8 if (from >= to) {

9 throw new Error("'from' value must be smaller than 'to' value.

ë ");

10 }

11

12 const range = to - from + 1;

13 return Math.floor(Math.random () * range) + from;

14 }

In file /ethx-rewards-offchain/src/withdraw-validator-list/

permissionedValidatorsToExit.ts:

Listing 22

1 const randomOperatorIndex = Math.floor(

2 Math.random () * operatorVsValidatorsList.length

3);

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to make use of the crypto/rand package instead.

Remediation Plan:

SOLVED: StaderLabs solved the issue by implementing crypto module instead

of the random module.

In file ethx-rewards-offchain/src/utils/randomNumber.ts:

Listing 23

1 export function mathRandom () {

2 return crypto.getRandomValues(new Uint32Array (1))[0] / 2 ** 32;

3 }

4 ...

5 const range = to - from + 1;

6 return Math.floor(mathRandom () * range) + from;

7 }

In file /ethx-rewards-offchain/src/withdraw-validator-list/

permissionedValidatorsToExit.ts:

Listing 24

1 const randomOperatorIndex = Math.floor(

2 mathRandom () * operatorVsValidatorsList.length

3);

41

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) PRESENCE OF TODO
COMMENTS IN SOURCE CODE -
INFORMATIONAL

Description:

Open To-Dos could point to architecture or programming issues that still

need to be resolved. These kinds of comments may also indicate areas

of complexity or confusion for developers, which could provide value and

insight to an attacker. Known weaknesses within the application requiring

further development would be prime targets.

Evidences:

Figure 3: List of files containing “TODO” in the source code.

42

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider resolving the TODOs before deploying code to a production

context. Use an independent issue tracker or other project management

software to track development tasks.

Remediation Plan:

SOLVED: StaderLabs solved the issue by removing the TODOs comments.

43

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	SCOPE
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	References

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan
	References

	
	Proof-of-concept
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan
	References

	
	Description
	Evidences
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	CVSS Vector
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	CVSS Score
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Evidences
	Risk Level
	Recommendation
	Remediation Plan

