
// Private Smart Contract Security Assessment 07.10.2024 - 07.19.2024

bnbX
Stader Labs

b n b X - St a d e r L a b s

Prepared by: HALBORN

Last Updated 07/31/2024

Date of Engagement by: July 10th, 2024 - July 19th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1 1

CRITICAL
0

HIGH
1

MEDIUM
0

LOW
2

INFORMATIONAL
8

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Claim withdrawal may not be available due to precision error
7.2 Incorrect logic prevents setting of stader treasury address
7.3 Incorrect logic affects undelegation process
7.4 Incorrect natspec
7.5 Possible re-entrancy behavior when migrating funds
7.6 Non-reentrant modifier ordering
7.7 Open to-dos
7.8 Floating pragma
7.9 Risk of evm version incompatibility across chains
7.10 Redundant verification
7.11 Use of magic numbers

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Stader Labs engaged Halborn to conduct a security assessment on their smart contracts beginning on
07-10-2024 and ending on 07-19-2024. The security assessment was scoped to the smart contracts
provided in the https://github.com/stader-labs/bnbX GitHub repository. Commit hashes and further
details can be found in the Scope section of this report. The bnbX codebase in scope mainly consists of
liquid staking solution for BNB Smart Chain.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 5 days for the engagement and assigned 1 full-time security engineer to review
the security of the smart contracts in scope. The engineer is a blockchain and smart contract security
expert with advanced penetration testing and smart contract hacking skills, and deep knowledge of
multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were mostly addressed by the Stader Labs team. The main identified issues were:

Claim withdrawal may not available due to precision error.
Incorrect logic prevents setting of Stader treasury address.
Incorrect logic affects undelegation process.

https://github.com/stader-labs/bnbX

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of this assessment. While
manual testing is recommended to uncover flaws in logic, process, and implementation; automated
testing techniques help enhance coverage of smart contracts and can quickly identify items that do not
follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into architecture, purpose and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issue.
Thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could led to arithmetic related vulnerabilities.
Local testing with custom scripts (Foundry).
Fork testing against main networks (Foundry).
Static analysis of security for scoped contract, and imported functions (Slither).

O u t - O f - S c o p e

External libraries and financial-related attacks.
New features/implementations after/within the remediation commit IDs.
Changes that occur outside of the scope of PRs.

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: bnbX

(b) Assessed Commit ID: 2bba18c

(c) Items in scope:

contracts/OperatorRegistry.sol
contracts/StakeManagerV2.sol
contracts/StakeManager.sol
test/migration/Migration.t.sol
script/foundry-scripts/migration/Migration.s.sol

Out-of-Scope:

REMEDIAT ION COMMIT ID :

https:/https:/
aee951caee951c

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
1

MEDIUM
0

LOW
2

INFORMATIONAL
8

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CLAIM WITHDRAWAL MAY NOT BE AVAILABLE DUE TO
PRECISION ERROR

HIGH SOLVED - 07/24/2024

https://github.com/stader-labs/bnbX/tree/bsc-migration
https://github.com/stader-labs/bnbX/blob/aee951c5477fa8091f25386980fddeac905f9e20/contracts/StakeManagerV2.sol#L196
https://github.com/stader-labs/bnbX/blob/aee951c5477fa8091f25386980fddeac905f9e20/contracts/StakeManagerV2.sol#L196
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

INCORRECT LOGIC PREVENTS SETTING OF STADER
TREASURY ADDRESS

LOW SOLVED - 07/24/2024

INCORRECT LOGIC AFFECTS UNDELEGATION
PROCESS

LOW SOLVED - 07/24/2024

INCORRECT NATSPEC INFORMATIONAL SOLVED - 07/24/2024

POSSIBLE RE-ENTRANCY BEHAVIOR WHEN
MIGRATING FUNDS

INFORMATIONAL ACKNOWLEDGED

NON-REENTRANT MODIFIER ORDERING INFORMATIONAL SOLVED - 07/24/2024

OPEN TO-DOS INFORMATIONAL ACKNOWLEDGED

FLOATING PRAGMA INFORMATIONAL SOLVED - 07/24/2024

RISK OF EVM VERSION INCOMPATIBILITY ACROSS
CHAINS

INFORMATIONAL ACKNOWLEDGED

REDUNDANT VERIFICATION INFORMATIONAL SOLVED - 07/24/2024

USE OF MAGIC NUMBERS INFORMATIONAL SOLVED - 07/24/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 C L A I M WI T H D R AWA L M AY N OT B E AVA I L A B L E D U E TO
P R EC I S I O N E R RO R
// HIGH

Description
In the StakeManagerV2.sol contract, the claimWithdrawal() function is intended to facilitate the
withdrawal of user funds. However, a precision error due to different calculations between contracts may
prevent users from successfully withdrawing their funds.

function claimWithdrawal(uint256 _idx) external override whenNotPaused nonReentrant
returns (uint256) {
 WithdrawalRequest storage request = _extractRequest(msg.sender, _idx);
 if (request.claimed) revert AlreadyClaimed();

 BatchWithdrawalRequest memory batchRequest =
batchWithdrawalRequests[request.batchId];
 if (!batchRequest.isClaimable) revert Unbonding();

 request.claimed = true;
 uint256 amountInBnb = (batchRequest.amountInBnb * request.amountInBnbX) /
batchRequest.amountInBnbX;

 (bool success,) = payable(msg.sender).call{ value: amountInBnb }("");
 if (!success) revert TransferFailed();

 emit ClaimedWithdrawal(msg.sender, _idx, amountInBnb);
 return amountInBnb;
}

The issue stems from a dependency on external calculations using the StakeCredit contract address.
Specifically, there is a discrepancy in share calculations between the startBatchUndelegation() and
the StakeHub.undelegate() function, resulting in a mismatch of 1 wei in the bnbAmount calculation.
This discrepancy between the two calculations will result in a failed execution of the claimWithdrawal()
function after the completeBatchUndelegation() function has been called, as the funds claimed from
the STAKE_HUB contract will be lower than the amount needed for withdrawal.

Proof of Concept
Take this scenario as an example, where a user makes a withdrawal request with the value 1000 :

function test_claimWithdrawal() public {
 vm.deal(user1, 100 ether);

 deal(address(bnbxAddrProxy), user1, 10 ether);
 vm.startPrank(user1);
 uint256 amountMinted = stakeManagerV2.delegate{value: 1 ether}("referral");
 amountMinted = 1000;

 /* --------------------------- withdrawal request --------------------------- */
 // there has to be a withdrawalrequest
 vm.startPrank(user1);
 IERC20(bnbxAddrProxy).approve(address(stakeManagerV2), type(uint256).max);
 stakeManagerV2.requestWithdraw(amountMinted);
 assertEq(stakeManagerV2.getWithdrawalRequestCount(), 1);
 assertEq(IERC20(bnbxAddrProxy).balanceOf(address(stakeManagerV2)), amountMinted);
 vm.stopPrank();

 /* ---------------------------- startBatch undelegation first ---------------------
------- */
 vm.startPrank(staderOperator);
 stakeManagerV2.startBatchUndelegation(1, address(0));
 uint batchWithdrawalRequestCount = stakeManagerV2.getBatchWithdrawalRequestCount();
 console.log("batchWithdrawalRequestCount: ", batchWithdrawalRequestCount);
 vm.stopPrank();

 /* ------------------- have to complete batch undelegation ------------------ */
 // this is to change the state of the batch request and make it claimable
 vm.startPrank(staderOperator);
 skip(7 days);
 uint firstUnbondingBatchIndexBefore = stakeManagerV2.firstUnbondingBatchIndex();

 /* ---------------------------------- deal ---------------------------------- */
 // if contract has that extra wei, execution succeeds
 // vm.deal(address(stakeManagerV2), 1); // UNCOMMENT THIS LINE TO SUCCESFULLY
EXECUTE
 /* ---------------------------------- deal ---------------------------------- */

 stakeManagerV2.completeBatchUndelegation();
 uint firstUnbondingBatchIndexAfter = stakeManagerV2.firstUnbondingBatchIndex();
 assertEq(firstUnbondingBatchIndexAfter, firstUnbondingBatchIndexBefore + 1);
 vm.stopPrank();

 vm.startPrank(user1);
 uint256 balanceOfUserBefore = user1.balance;
 vm.expectRevert(TransferFailed.selector);
 stakeManagerV2.claimWithdrawal(0);
}

1. An operator calls the startBatchUndelegation() function to store the withdrawal request.

2. The amountToWithdrawFromOperator is calculated based on a call to the convertBnbXToBnb(1000)
function, with an output of 1091, storing this as the value to withdraw in the batchWithdrawalRequests
array:

addressaddress creditContract creditContract == STAKE_HUB STAKE_HUB..getValidatorCreditContractgetValidatorCreditContract((_operator_operator));;
uint256uint256 amountInBnbXToBurn amountInBnbXToBurn == _computeBnbXToBurn_computeBnbXToBurn((_batchSize_batchSize,, creditContract creditContract))
uint256uint256 amountToWithdrawFromOperator amountToWithdrawFromOperator == convertBnbXToBnbconvertBnbXToBnb((amountInBnbXToBurnamountInBnbXToBurn))
totalDelegated totalDelegated -=-= amountToWithdrawFromOperator amountToWithdrawFromOperator;;

batchWithdrawalRequestsbatchWithdrawalRequests..pushpush((
 BatchWithdrawalRequestBatchWithdrawalRequest(({{
 amountInBnb amountInBnb:: amountToWithdrawFromOperator amountToWithdrawFromOperator,,
 amountInBnbX amountInBnbX:: amountInBnbXToBurn amountInBnbXToBurn,,
 unlockTime unlockTime:: block block..timestamp timestamp ++ STAKE_HUB STAKE_HUB..unbondPeriodunbondPeriod(()),,
 operator operator:: _operator _operator,,
 isClaimable isClaimable:: falsefalse
 }}))
));;

3. This 1091 value is used to calculate the shares via the StakeCredit contract, which results in 1087
shares:

uint256uint256 shares shares == IStakeCreditIStakeCredit((creditContractcreditContract))..getSharesByPooledBNBgetSharesByPooledBNB((amountToWamountToW

4. That value of 1087 shares is passed to the STAKE_HUB.undelegate() function:

STAKE_HUBSTAKE_HUB..undelegateundelegate((_operator_operator,, shares shares));;

5. The STAKE_HUB.undelegate() function calculates the bnbAmount by a call to the Stake Credit
contract:

uint256uint256 bnbAmount bnbAmount == IStakeCreditIStakeCredit((valInfovalInfo..creditContractcreditContract))..undelegateundelegate((delegatodelegato

6. The bnbAmount returned from the STAKE_HUB.undelegate() function is 1090 instead of the expected
1091.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (7.5)

Recommendation
Ensure that the claimed values from the external call to the STAKE_HUB contract when executing
completeBatchUndelegation() match the expected withdrawal values calculated in the amountInBnb

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN

from the batchWithdrawalRequest stored so that the native balance of the StakeManagerV2 contract is
sufficient for users calling the claimWithdrawal() function.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by utilizing the
IStakeCredit.getPooledBNBByShares() from the logic to calculate the amount of BnB to return to
users.

Remediation Hash
https://github.com/stader-labs/bnbX/blob/aee951c5477fa8091f25386980fddeac905f9e20/contracts/S
takeManagerV2.sol#L196

References
StakeManagerV2.sol#L130
StakeManagerV2.sol#L150
StakeManagerV2.sol#L192

https://github.com/stader-labs/bnbX/blob/aee951c5477fa8091f25386980fddeac905f9e20/contracts/StakeManagerV2.sol#L196
https://github.com/stader-labs/bnbX/blob/aee951c5477fa8091f25386980fddeac905f9e20/contracts/StakeManagerV2.sol#L196

7. 2 I N C O R R EC T LO G I C P R EV E N TS S E T T I N G O F STA D E R
T R E AS U RY A D D R ES S
// LOW

Description
In the StakeManagerV2.sol contract, the setStaderTreasury() function is used to set the address of
the Stader treasury. However, the function is not implemented correctly, as it reverts if the
_staderTreasury address is not the zero address:

if (_staderTreasury != address(0)) revert ZeroAddress();

This logic is incorrect, as the function should allow the _staderTreasury address to be set to any non-
zero address. This bug renders the setStaderTreasury() function unusable, potentially disrupting
operations that rely on a properly set treasury address.

Proof of Concept
In the following example, the setStaderTreasury() function fails on execution:

function test_setStaderTreasury() public {
 vm.startPrank(admin);
 address newTreasury = makeAddr("new-treasury");
 vm.expectRevert(ZeroAddress.selector);
 stakeManagerV2.setStaderTreasury(newTreasury);
}

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:N/Y:N (2.5)

Recommendation
Refactor the if statement to revert only when the new _staderTreasury address is the zero address.

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN

if (_staderTreasury == address(0)) revert ZeroAddress();

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
StakeManagerV2.sol#L277

https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7. 3 I N C O R R EC T LO G I C A F F EC TS U N D E L EG AT I O N P RO C ES S
// LOW

Description
The _computeBnbXToBurn function in the StakeManagerV2.sol contract has a complex loop that
calculates the amount of BNBX to burn. This function is used in the startBatchUndelegation() function
to calculate the amount of BNBX to burn when a user starts batch undelegation. However, the logic in the
_computeBnbXToBurn function is incorrect, as it increments the value of the
firstUnprocessedUserIndex variable prior to using this value to update the cummulativeBnbXToBurn
variable.

function _computeBnbXToBurn(
 uint256 _batchSize,
 address _creditContract
)
 internal
 returns (uint256 amountInBnbXToBurn)
{
 uint256 pooledBnb = IStakeCredit(_creditContract).getPooledBNB(address(this));

 uint256 cummulativeBnbXToBurn = amountInBnbXToBurn +
withdrawalRequests[firstUnprocessedUserIndex].amountInBnbX;
 uint256 cummulativeBnbToWithdraw = convertBnbXToBnb(cummulativeBnbXToBurn);
 uint256 processedCount;

 while (
 (processedCount < _batchSize) && (firstUnprocessedUserIndex <
withdrawalRequests.length)
 && (cummulativeBnbToWithdraw <= pooledBnb)
) {
 amountInBnbXToBurn = cummulativeBnbXToBurn;
 withdrawalRequests[firstUnprocessedUserIndex].processed = true;
 withdrawalRequests[firstUnprocessedUserIndex].batchId =
batchWithdrawalRequests.length;
 processedCount++;
 firstUnprocessedUserIndex++;
 // below line won't end up in infinite loop, these checks will stop it
 // (processedCount < _batchSize) && (firstUnprocessedUserIndex <
withdrawalRequests.length)
 cummulativeBnbXToBurn +=
withdrawalRequests[firstUnprocessedUserIndex].amountInBnbX;
 cummulativeBnbToWithdraw = convertBnbXToBnb(cummulativeBnbXToBurn);
 }

 if (amountInBnbXToBurn == 0) revert NoWithdrawalRequests();
}

This leads to an impossibility of executing the startBatchUndelegation() function succesfully.

Proof of Concept
In the following scenario, the startBatchUndelegation() function call fails on execution:

functionfunction test_startBatchUndelegationtest_startBatchUndelegation(()) publicpublic {{
 uint256uint256 amount amount == 11 ether ether;;
 vm vm..dealdeal((managermanager,, amount amount ** 1010));;
 dealdeal((addressaddress((bnbxAddrProxybnbxAddrProxy)),, user1 user1,, amount amount ** 1010));;

 // there has to be a withdrawalrequest// there has to be a withdrawalrequest
 vm vm..dealdeal((user1user1,, amount amount));;
 vm vm..startPrankstartPrank((user1user1));;
 uint256uint256 amountMinted amountMinted == stakeManagerV2 stakeManagerV2..delegatedelegate{{valuevalue:: amount amount}}(("referral""referral"))
 IERC20IERC20((bnbxAddrProxybnbxAddrProxy))..approveapprove((addressaddress((stakeManagerV2stakeManagerV2)),, typetype((uint256uint256))..maxmax))

 stakeManagerV2 stakeManagerV2..requestWithdrawrequestWithdraw((amountMintedamountMinted));;
 assertEqassertEq((stakeManagerV2stakeManagerV2..getWithdrawalRequestCountgetWithdrawalRequestCount(()),, 11));;
 assertEqassertEq((IERC20IERC20((bnbxAddrProxybnbxAddrProxy))..balanceOfbalanceOf((addressaddress((stakeManagerV2stakeManagerV2)))),, amountM amountM
 vm vm..stopPrankstopPrank(());;

 vm vm..startPrankstartPrank((staderOperatorstaderOperator));;
 vm vm..expectRevertexpectRevert(());;
 stakeManagerV2 stakeManagerV2..startBatchUndelegationstartBatchUndelegation((11,, addressaddress((00))));;
}}

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:C/I:C/D:N/Y:N (2.5)

Recommendation

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AC%2FI%3AC%2FD%3AN%2FY%3AN

Consider updating the _computeBnbXToBurn function to correctly calculate the amount of BNBX to burn
by incrementing the firstUnprocessedUserIndex variable after updating the cummulativeBnbXToBurn
variable.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
StakeManagerV2.sol#L376-L379

https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7. 4 I N C O R R EC T N ATS P EC
// INFORMATIONAL

Description
The completeBatchUndelegation() from the StakeManagerV2.sol contract is designed to complete the
undelegation process. According to its NATSPEC documentation, the function should only be called by an
authorized address with the OPERATOR_ROLE:
This function can only be called by an address with the OPERATOR_ROLE..
However, as stated by the Stader Labs team, the NATSPEC comments are incorrect and the
completeBatchUndelegation() is expected to be open. This could lead to confusion and potential
misuse of the function.

BVSS

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (1.5)

Recommendation
Update the NATSPEC documentation to accurately reflect the intended functionality of the
completeBatchUndelegation() function.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation and
removing the incorrect NATSPEC documentation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
StakeManagerV2.sol#L192

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7. 5 P O S S I B L E R E- E N T R A N CY B E H AV I O R WH E N M I G R AT I N G
F U N D S
// INFORMATIONAL

Description
In the StakeManagerV1 contract, the migrateFunds() function is responsible for transferring funds to
the manager address, using the low-level call method.
While this approach is generally safe with an expected trusted manager address, it's worth considering
potential edge cases. For example, in an unlikely scenario where the manager address points to a
contract with code that leads to unexpected behavior, the migrateFunds() function could be a point of
vulnerability to reentrancy to the StakeManager contract due to the flexibility of the low-level call
method.

BVSS

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (1.5)

Recommendation
In case the manager address is a contract, ensure that this contract does not contain any code that
could potentially call back into the StakeManagerV1 contract or interact with any other contracts within
the system in unexpected ways.
Alternatively, consider implementing a reentrancy protection mechanism to the functions in the
StakeManager contract, such as OpenZeppelin's ReentrancyGuard.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Stader Labs team made a business decision to acknowledge this finding and not
alter the contracts, stating that:
If manager is comprised, then it would be able to execute many other privileged functions. And we have
2-step process to set a new manager role, so I believe we are good for now.

References
StakeManager.sol#L337

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU

7. 6 N O N - R E E N T R A N T M O D I F I E R O R D E R I N G
// INFORMATIONAL

Description
In Solidity, if a function has multiple modifiers, they are executed in the order specified. If checks or logic
of modifiers depend on other modifiers, this has to be considered in their ordering.
Several functions of the contracts in scope have multiple modifiers, with one of them being
nonReentrant which prevents reentrancy behavior on the functions. Ideally, the nonReentrant modifier
should be the first one to prevent even the execution of other modifiers in case of reentrancy behavior.
While there is currently no obvious vulnerability with nonReentrant being the last modifier in the list,
placing it first ensures that all other modifiers are executed only if the call is non-reentrant. This is a
safer practice and can prevent potential issues in future updates or unforeseen scenarios.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:L/Y:N - (0.5)

Recommendation
Switch modifier order to consistently place the nonReentrant modifier as the first one to run so that all
other modifiers are executed only if the call is non-reentrant.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN+-
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN+-
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN+-
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN+-
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7.7 O P E N TO - D O S
// INFORMATIONAL

Description
Throughout the codebase, there are several open TO-DO comments that have not been addressed and
which may indicate that the functionality has not been not completely implemented. This incomplete
implementation could lead to unexpected behavior and/or potential vulnerabilities within the contract.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Ensure that all TO-DO comments are resolved, with priority in addressing them based on their potential
impact on the system's security, stability, and functionality. This may involve completing the functionality
as intended, removing the comment if it is no longer relevant, or providing additional context if necessary.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Stader Labs team made a business decision to acknowledge this finding and not
alter the contracts, stating that:
These TODOs are just steps, assertions to perform manually during deployment so that we do not forget.

References
Migration.s.sol#L42
Migration.s.sol#L76-L81
Migration.s.sol#L88

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN

7. 8 F LOAT I N G P R AG M A
// INFORMATIONAL

Description
The StakeManagercontract currently use floating pragma version ^0.8.0, which means that the code
can be compiled by any compiler version that is greater than or equal to 0.8.0, and less than 0.9.0.
However, it is recommended that contracts should be deployed with the same compiler version and flags
used during development and testing. Locking the pragma helps to ensure that contracts do not
accidentally get deployed using another pragma. For example, an outdated pragma version might
introduce bugs that affect the contract system negatively.

Score

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Lock the pragma version to the same version used during development and testing.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
StakeManager.sol#L2

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7. 9 R I S K O F EV M V E RS I O N I N C O M PAT I B I L I T Y AC RO S S
C H A I N S
// INFORMATIONAL

Description
From Solidity versions 0.8.20 through 0.8.24, the default target EVM version is set to Shanghai, which
results in the generation of bytecode that includes PUSH0 opcodes. Starting with version 0.8.25, the
default EVM version shifts to Cancun, introducing new opcodes for transient storage, TSTORE and TLOAD.
In this aspect, it is crucial to select the appropriate EVM version when it's intended to deploy the
contracts on networks other than the Ethereum mainnet, which may not support these opcodes. Failure
to do so could lead to unsuccessful contract deployments or transaction execution issues.

Score

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Make sure to specify the target EVM version when using Solidity versions from 0.8.20 and above if
deploying to chains that may not support newly introduced opcodes. Additionally, it is crucial to stay
informed about the opcode support of different chains to ensure smooth deployment and compatibility.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Stader Labs team made a business decision to acknowledge this finding and not
alter the contracts.

References
StakeManagerV2.sol
OperatorRegistry.sol#L2

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN

7.1 0 R E D U N DA N T V E R I F I CAT I O N
// INFORMATIONAL

Description
In the removeOperator(), setPreferredDepositOperator(), and
setPreferredWithdrawalOperator() functions from the StakeManagerV2 contract, there is a
requirement that doesn't allow for the _operator address to be the zero address:

if (_operator == address(0)) revert ZeroAddress();

This may be unnecessary as the currently added operator address cannot be the zero address, since this
requirement is checked in the addOperator() function, which adds to the fact that the mentioned
functions have the whenOperatorDoesExist(_operator) modifier.

Score

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Remove the following line from the aforementioned functions:

if (_operator == address(0)) revert ZeroAddress();

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
OperatorRegistry.sol#L80
OperatorRegistry.sol#L107
OperatorRegistry.sol#L124

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

7.1 1 U S E O F M AG I C N U M B E RS
// INFORMATIONAL

Description
Throughout the contracts in scope, there are several instances where magic numbers are used. Magic
numbers are direct numerical or string values used in the code without any explanation or context. This
practice can lead to code maintainability issues, potential errors, and difficulty in understanding the
code's logic.

Score

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
To improve the code’s readability and facilitate refactoring, consider defining a constant for every magic
number, giving it a clear and self-explanatory name. Consider adding an inline comment explaining how
the magic numbers are calculated or why they are chosen for complex values.

R e m e d i a t i o n P l a n

SOLVED: The Stader Labs team has addressed the finding in commit
aee951c5477fa8091f25386980fddeac905f9e20 by following the mentioned recommendation.

Remediation Hash
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

References
contracts/StakeManager.sol#L43

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AN%2FY%3AN
https://github.com/stader-labs/bnbX/commit/aee951c5477fa8091f25386980fddeac905f9e20

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT
D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.
The security team assessed all findings identified by the Slither software, however, findings with related
to external dependencies are not included in the below results for the sake of report readability.

O u t p u t

The findings obtained as a result of the Slither scan were reviewed, and most of them were not included
in the report because they were determined as false positives.

UNIT TESTS AND FUZZING

The original repository used the Foundry environment to develop and test the smart contracts. All tests
were executed successfully. Additionally, the test codebase was amplified to generate additional tests
against a local fork that covered. These additional tests were run successfully.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

